Page 138 - GPD-4-2
P. 138

Gene & Protein in Disease                                         Binding of 11q to DENV and WNV proteases



            Consent for publication                               of flaviviruses contains an RNA triphosphatase activity.
                                                                  Virology. 1993;197(1):265-273.
            Not applicable.
                                                                  doi: 10.1006/viro.1993.1587
            Availability of data                               11.  Apte-Sengupta S, Sirohi D, Kuhn RJ. Coupling of

            All the data are provided in the manuscript. Raw files can   replication and assembly in flaviviruses.  Curr Opin  Virol.
            be obtained from the corresponding author on request.  2014;9:134-142.
                                                                  doi: 10.1016/j.coviro.2014.09.020
            References
                                                               12.  Noble CG, Seh CC, Chao AT, Shi PY. Ligand-bound
            1.   Malavige G, Fernando S, Fernando DJ, Seneviratne SL.   structures of the dengue virus protease reveal the active
               Dengue viral infections.  Postgrad Med J. 2004;80(948):   conformation. J Virol. 2012;86(1):438-446.
               588-601.
                                                                  doi: 10.1128/JVI.06225-11
               doi: 10.1136/pgmj.2004.019638
                                                               13.  Erbel P, Schiering N, D’Arcy A, et al. Structural basis for the
            2.   Guzman MG, Harris E. Dengue.  Lancet. 2015;385(9966):   activation of flaviviral NS3 proteases from dengue and West
               453-465.                                           nile virus. Nat Struct Mol Biol. 2006;13(4):372-373.
               doi: 10.1016/S0140-6736(14)60572-9                 doi: 10.1038/nsmb1073
            3.   Cregar-Hernandez L, Jiao GS, Johnson AT, Lehrer AT,   14.  Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B-NS3
               Wong TAS, Margosiak SA. Small molecule pan-dengue   protease-helicase as a target for antiviral drug development.
               and west nile virus NS3 protease inhibitors. Antivir Chem   Antivir Res. 2015;118:148-158.
               Chemother. 2011;21(5):209-218.
                                                                  doi: 10.1016/j.antiviral.2015.03.014
               doi: 10.3851/IMP1767
                                                               15.  Purohit P, Sahoo S, Panda M, Sahoo PS, Meher BR. Targeting
            4.   Bhatt S, Gething PW, Brady OJ, et al. The global distribution   the DENV NS2B-NS3 protease with active antiviral
               and burden of dengue. Nature. 2013;496(7446):504-507.  phytocompounds:  Structure-based  virtual  screening,
               doi: 10.1038/nature12060                           molecular docking and molecular dynamics simulation
                                                                  studies. J Mol Model. 2022;28(11):365.
            5.   Lim SP, Shi PY. West nile virus drug discovery.  Viruses.
               2013;5(12):2977-3006.                              doi: 10.1007/s00894-022-05355-w
               doi: 10.3390/v5122977                           16.  Chakraborty T, Alcamo IE.  Dengue Fever and Other
                                                                  Hemorrhagic Viruses. New York: Infobase Publishing; 2008.
            6.   Petersen LR, Brault AC, Nasci RS. West nile virus: Review of
               the literature. JAMA. 2013;310(3):308-315.      17.  Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus
                                                                  genome organization, expression, and replication. Annu Rev
               doi: 10.1001/jama.2013.8042                        Microbiol. 1990;44:649-688.
            7.   Li J, Lim SP, Beer D, et al. Functional profiling of recombinant      doi: 10.1146/annurev.mi.44.100190.003245
               NS3 proteases from all four serotypes of dengue virus using
               tetrapeptide and octapeptide substrate libraries. J Biol Chem.   18.  Colpitts TM, Conway MJ, Montgomery RR, Fikrig E. West
               2005;280(31):28766-28774.                          nile virus: Biology, transmission, and human infection. Clin
                                                                  Microbiol Rev. 2012;25(4):635-648.
               doi: 10.1074/jbc.M500588200
                                                                  doi: 10.1128/CMR.00045-12
            8.   Yusof R, Clum S, Wetzel M, Murthy HK, Padmanabhan R.
               Purified NS2B/NS3 serine protease of dengue virus   19.  Lei J, Hansen G, Nitsche C, Klein CD, Zhang L,
               type 2 exhibits cofactor NS2B dependence for cleavage of   Hilgenfeld R. Crystal structure of Zika virus NS2B-NS3
               substrates with dibasic amino acids in vitro. J Biol Chem.   protease in complex with a boronate inhibitor.  Science.
               2000;275(14):9963-9969.                            2016;353(6298):503-505.
               doi: 10.1074/jbc.275.14.9963                       doi: 10.1126/science.aag2419
            9.   Lima AB, Behnam MA, El Sherif Y, Nitsche C, Vechi SM,   20.  Zhang Z, Li Y, Loh YR,  et al. Crystal structure of
               Klein CD. Dual inhibitors of the dengue and West Nile virus   unlinked NS2B-NS3  protease  from  Zika  virus.  Science.
               NS2B-NS3 proteases: Synthesis, biological evaluation and   2016;354(6319):1597-1600.
               docking studies of novel peptide-hybrids. Bioorg Med Chem.      doi: 10.1126/science.aai9309
               2015;23(17):5748-5755.
                                                               21.  Pant  S,  Jena  NR.  C-terminal  extended  hexapeptides  as
               doi: 10.1016/j.bmc.2015.07.012
                                                                  potent inhibitors of the NS2B-NS3 protease of the ZIKA
            10.  Wengler G, Wengler G. The NS 3 nonstructural protein   virus. Front Med. 2022;9:921060.


            Volume 4 Issue 2 (2025)                         9                               doi: 10.36922/gpd.8293
   133   134   135   136   137   138   139   140   141   142   143