Page 32 - GPD-4-2
P. 32
Gene & Protein in Disease lncRNAs dysregulation in diabetes and its complications
modulating p38/JNK phosphorylation and stimulating induced inflammatory process in the endothelial cells. J Cell
insulin receptor gene expression and downstream signaling. Mol Med. 2015;19(6):1418-1425.
PLoS One. 2014;9(4):e95416.
doi: 10.1111/jcmm.12576
doi: 10.1371/journal.pone.0095416 36. Li P, Ruan X, Yang L, et al. A liver-enriched long non-coding
25. Yin DD, Zhang EB, You LH, et al. Downregulation of lncRNA RNA, lncLSTR, regulates systemic lipid metabolism in mice.
TUG1 affects apoptosis and insulin secretion in mouse Cell Metab. 2015;21(3):455-467.
pancreatic β cells. Cell Physiol Biochem. 2015;35(5):1892-1904. doi: 10.1016/j.cmet.2015.02.004
doi: 10.1159/000373999 37. Lange J, Yafai Y, Noack A, et al. The axon guidance molecule
26. Feng S-D, Yang JH, Yao CH, et al. Potential regulatory Netrin‐4 is expressed by Müller cells and contributes to
mechanisms of lncRNA in diabetes and its complications. angiogenesis in the retina. Glia. 2012;60(10):1567-1578.
Biochem Cell Biol. 2017;95(3):361-367. doi: 10.1002/glia.22376
doi: 10.1139/bcb-2016-0110 38. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E,
27. Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic Border WA. Expression of transforming growth factor beta
disorders. Nat Rev Mol Cell Biol. 2012;13(4):239-250. is elevated in human and experimental diabetic nephropathy.
Proc Natl Acad Sci U S A. 1993;90(5):1814-1818.
doi: 10.1038/nrm3313
doi: 10.1073/pnas.90.5.1814
28. Cade WT. Diabetes-related microvascular and
macrovascular diseases in the physical therapy setting. Phys 39. Gonzalez-Moro I, Olazagoitia-Garmendia A, Colli ML,
Ther. 2008;88(11):1322-1335. et al. The T1D-associated lncRNA Lnc13 modulates human
pancreatic β cell inflammation by allele-specific stabilization
doi: 10.2522/ptj.20080008 of STAT1 mRNA. Proc Nal Acad Sci. 2020;117(16):9022-9031.
29. Duh E, Aiello LP. Vascular endothelial growth factor and doi: 10.1073/pnas.1914353117
diabetes: The agonist versus antagonist paradox. Diabetes.
1999;48(10):1899-1906. 40. Alvarez ML, Khosroheidari M, Eddy E, Kiefer J. Role of
microRNA 1207-5P and its host gene, the long non-coding
doi: 10.2337/diabetes.48.10.1899 RNA Pvt1, as mediators of extracellular matrix accumulation
30. Hammes HP, Feng Y, Pfister F, Brownlee M. Diabetic in the kidney: Implications for diabetic nephropathy. PLoS
retinopathy: Targeting vasoregression. Diabetes. One. 2013;8(10):e77468.
2011;60(1):9-16. doi: 10.1371/journal.pone.0077468
doi: 10.2337/db10-0454 41. Choudhury D, Tuncel M, Levi M. Diabetic nephropathy--a
31. Michalik KM, You X, Manavski Y, et al. Long noncoding multifaceted target of new therapies. Discov Med.
RNA MALAT1 regulates endothelial cell function and vessel 2010;10(54):406-415.
growth. Circ Res. 2014;114(9):1389-1397. 42. Kanwar YS, Sun L, Xie P, Liu FY, Chen S. A glimpse of
doi: 10.1161/CIRCRESAHA.114.303265 various pathogenetic mechanisms of diabetic nephropathy.
Annu Rev Pathol. 2011;6:395-423.
32. Bell RD, Long X, Lin M, et al. Identification and initial
functional characterization of a human vascular cell- doi: 10.1146/annurev.pathol.4.110807.092150
enriched long noncoding RNA. Arterioscler Thromb Vasc 43. Kato M, Natarajan R. MicroRNAs in diabetic nephropathy:
Biol. 2014;34(6):1249-1259. Functions, biomarkers, and therapeutic targets. Anne N Y
doi: 10.1161/ATVBAHA.114.303240 Acad Sci. 2015;1353(1):72-88.
33. Marrero MB, Fulton D, Stepp D, Stern DM. Angiotensin doi: 10.1111/nyas.12758
II-induced signaling pathways in diabetes. Curr Diabet Rev. 44. Arora MK, Singh UK. Molecular mechanisms in the
2005;1(2):197-202. pathogenesis of diabetic nephropathy: An update. Vascul
doi: 10.2174/1573399054022802 Pharmacol. 2013;58(4):259-271.
34. Wu G, Cai J, Han Y, et al. LincRNA-p21 regulates neointima doi: 10.1016/j.vph.2013.01.001
formation, vascular smooth muscle cell proliferation, 45. Kitada M, Kanasaki K, Koya D. Clinical therapeutic
apoptosis, and atherosclerosis by enhancing p53 activity. strategies for early stage of diabetic kidney disease. World J
Circulation. 2014;130(17):1452-1465. Diabetes. 2014;5(3):342.
doi: 10.1161/CIRCULATIONAHA.114.011675 doi: 10.4239/wjd.v5.i3.342
35. Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S. 46. Risdon RA, Sloper JC, De Wardener HE. Relationship
Long non‐coding RNA MALAT regulates hyperglycaemia between renal function and histological changes found
1
Volume 4 Issue 2 (2025) 12 doi: 10.36922/gpd.4000

