Page 32 - GPD-4-2
P. 32

Gene & Protein in Disease                                 lncRNAs dysregulation in diabetes and its complications



               modulating p38/JNK  phosphorylation and stimulating   induced inflammatory process in the endothelial cells. J Cell
               insulin receptor gene expression and downstream signaling.   Mol Med. 2015;19(6):1418-1425.
               PLoS One. 2014;9(4):e95416.
                                                                  doi: 10.1111/jcmm.12576
               doi: 10.1371/journal.pone.0095416               36.  Li P, Ruan X, Yang L, et al. A liver-enriched long non-coding
            25.  Yin DD, Zhang EB, You LH, et al. Downregulation of lncRNA   RNA, lncLSTR, regulates systemic lipid metabolism in mice.
               TUG1 affects apoptosis and insulin secretion in mouse   Cell Metab. 2015;21(3):455-467.
               pancreatic β cells. Cell Physiol Biochem. 2015;35(5):1892-1904.     doi: 10.1016/j.cmet.2015.02.004
               doi: 10.1159/000373999                          37.  Lange J, Yafai Y, Noack A, et al. The axon guidance molecule
            26.  Feng  S-D,  Yang  JH,  Yao  CH,  et al.  Potential  regulatory   Netrin‐4  is  expressed  by Müller  cells  and  contributes to
               mechanisms of lncRNA in diabetes and its complications.   angiogenesis in the retina. Glia. 2012;60(10):1567-1578.
               Biochem Cell Biol. 2017;95(3):361-367.             doi: 10.1002/glia.22376
               doi: 10.1139/bcb-2016-0110                      38.  Yamamoto T, Nakamura T, Noble NA, Ruoslahti E,
            27.  Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic   Border  WA. Expression of transforming growth factor beta
               disorders. Nat Rev Mol Cell Biol. 2012;13(4):239-250.  is elevated in human and experimental diabetic nephropathy.
                                                                  Proc Natl Acad Sci U S A. 1993;90(5):1814-1818.
               doi: 10.1038/nrm3313
                                                                  doi: 10.1073/pnas.90.5.1814
            28.  Cade  WT.  Diabetes-related  microvascular  and
               macrovascular diseases in the physical therapy setting. Phys   39.  Gonzalez-Moro I, Olazagoitia-Garmendia A, Colli ML,
               Ther. 2008;88(11):1322-1335.                       et  al. The T1D-associated lncRNA Lnc13 modulates human
                                                                  pancreatic β cell inflammation by allele-specific stabilization
               doi: 10.2522/ptj.20080008                          of STAT1 mRNA. Proc Nal Acad Sci. 2020;117(16):9022-9031.
            29.  Duh E, Aiello LP. Vascular endothelial growth factor and      doi: 10.1073/pnas.1914353117
               diabetes: The agonist versus antagonist paradox. Diabetes.
               1999;48(10):1899-1906.                          40.  Alvarez ML, Khosroheidari M, Eddy E, Kiefer J. Role of
                                                                  microRNA 1207-5P and its host gene, the long non-coding
               doi: 10.2337/diabetes.48.10.1899                   RNA Pvt1, as mediators of extracellular matrix accumulation
            30.  Hammes HP, Feng Y, Pfister F, Brownlee M. Diabetic   in the kidney: Implications for diabetic nephropathy. PLoS
               retinopathy:  Targeting  vasoregression.  Diabetes.   One. 2013;8(10):e77468.
               2011;60(1):9-16.                                   doi: 10.1371/journal.pone.0077468
               doi: 10.2337/db10-0454                          41.  Choudhury D, Tuncel M, Levi M. Diabetic nephropathy--a
            31.  Michalik KM, You X, Manavski Y, et al. Long noncoding   multifaceted  target  of  new  therapies.  Discov Med.
               RNA MALAT1 regulates endothelial cell function and vessel   2010;10(54):406-415.
               growth. Circ Res. 2014;114(9):1389-1397.        42.  Kanwar YS, Sun L, Xie P, Liu FY, Chen S. A  glimpse of

               doi: 10.1161/CIRCRESAHA.114.303265                 various pathogenetic mechanisms of diabetic nephropathy.
                                                                  Annu Rev Pathol. 2011;6:395-423.
            32.  Bell  RD,  Long  X, Lin  M,  et al.  Identification and  initial
               functional characterization of a human vascular cell-     doi: 10.1146/annurev.pathol.4.110807.092150
               enriched long noncoding RNA.  Arterioscler Thromb Vasc   43.  Kato M, Natarajan R. MicroRNAs in diabetic nephropathy:
               Biol. 2014;34(6):1249-1259.                        Functions, biomarkers, and therapeutic targets. Anne N Y
               doi: 10.1161/ATVBAHA.114.303240                    Acad Sci. 2015;1353(1):72-88.
            33.  Marrero MB, Fulton D, Stepp D, Stern DM. Angiotensin      doi: 10.1111/nyas.12758
               II-induced signaling pathways in diabetes. Curr Diabet Rev.   44.  Arora MK, Singh UK. Molecular mechanisms in the
               2005;1(2):197-202.                                 pathogenesis of diabetic nephropathy: An update.  Vascul
               doi: 10.2174/1573399054022802                      Pharmacol. 2013;58(4):259-271.
            34.  Wu G, Cai J, Han Y, et al. LincRNA-p21 regulates neointima      doi: 10.1016/j.vph.2013.01.001
               formation, vascular smooth muscle cell proliferation,   45.  Kitada  M,  Kanasaki  K,  Koya  D.  Clinical  therapeutic
               apoptosis,  and  atherosclerosis  by  enhancing  p53  activity.   strategies for early stage of diabetic kidney disease. World J
               Circulation. 2014;130(17):1452-1465.               Diabetes. 2014;5(3):342.
               doi: 10.1161/CIRCULATIONAHA.114.011675             doi: 10.4239/wjd.v5.i3.342
            35.  Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S.   46.  Risdon RA, Sloper JC, De Wardener HE. Relationship
               Long non‐coding RNA MALAT  regulates hyperglycaemia   between renal function and histological changes found
                                       1

            Volume 4 Issue 2 (2025)                         12                              doi: 10.36922/gpd.4000
   27   28   29   30   31   32   33   34   35   36   37