Page 31 - GPD-4-2
P. 31

Gene & Protein in Disease                                 lncRNAs dysregulation in diabetes and its complications



            Availability of data                               13.  Carter G, Miladinovic B, Patel AA, Deland L, Mastorides  S,
                                                                  Patel NA. Circulating long noncoding RNA GAS5 levels are
            Not applicable.                                       correlated to prevalence of type  2 diabetes mellitus.  BBA
                                                                  Clin. 2015;4:102-107.
            References
                                                                  doi: 10.1016/j.bbacli.2015.09.001
            1.   Melissari MT, Grote P. Roles for long non-coding RNAs in
               physiology and disease. Pflügers Arch. 2016;468:945-958.  14.  González-Moro I, Santin I. Long non-coding RNA-regulated
                                                                  pathways in pancreatic β cells: Their role in diabetes. Int Rev
               doi: 10.1007/s00424-016-1804-y                     Cell Mol Biol. 2021;359:325-355.
            2.   Mattick JS, Amaral PP, Carninci P,  et al. Long non-     doi: 10.1016/bs.ircmb.2021.02.007
               coding RNAs: Definitions, functions, challenges and
               recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430-447.  15.  Morán I, Akerman I, Van De Bunt M, et al. Human β cell
                                                                  transcriptome analysis uncovers lncRNAs that are tissue-
               doi: 10.1038/s41580-022-00566-8                    specific, dynamically regulated, and abnormally expressed
            3.   Wu M, Feng Y, Shi X. Advances with long non-coding RNAs   in type 2 diabetes. Cell Metab. 2012;16(4):435-448.
               in diabetic peripheral neuropathy.  Diabetes  Metab  Syndr      doi: 10.1016/j.cmet.2012.08.010
               Obes. 2020;13:1429-1434.
                                                               16.  Ku GM, Kim H, Vaughn IW,  et al. Research resource:
               doi: 10.2147/dmso.s249232                          RNA-Seq reveals unique features of the pancreatic  β-cell
            4.   Grammatikakis I, Lal A. Significance of lncRNA abundance   transcriptome. Mol Endocrinol. 2012;26(10):1783-1792.
               to function. Mamm Genome. 2022;33(2):271-280.      doi: 10.1210/me.2012-1176
               doi: 10.1007/s00335-021-09901-4                 17.  Nica AC, Ongen H, Irminger JC,  et al. Cell-type, allelic,
            5.   Li J, Liu C. Coding or noncoding, the converging concepts of   and genetic signatures in the human pancreatic beta cell
               RNAs. Front Genet. 2019;10:496.                    transcriptome. Genome Res. 2013;23(9):1554-1562.
               doi: 10.3389/fgene.2019.00496                      doi: 10.1101/gr.150706.112
            6.   American Diabetes Association. 2. Classification and diagnosis   18.  Rosa A, Brivanlou AH. Regulatory non-coding RNAs in
               of diabetes: Standards of medical care in diabetes-2018.   pluripotent stem cells. Int J Mol Sci. 2013;14(7):14346-14373.
               Diabetes Care. 2018;41(Supplement_1):S13-S27.      doi: 10.3390/ijms140714346
               doi: 10.2337/dc18-S002                          19.  Barrett JC, Clayton DG, Concannon P, et al. Genome-wide
            7.   Paul  P,  Chakraborty A,  Sarkar  D,  et al.  Interplay   association study and meta-analysis find that over 40 loci
               between miRNAs and human diseases.  J  Cell Physiol.   affect risk of type 1 diabetes. Nat Genet. 2009;41(6):703-707.
               2018;233(3):2007-2018.                             doi: 10.1038/ng.381
               doi: 10.1002/jcp.25854                          20.  Cho YS, Chen CH, Hu C, et al. Meta-analysis of genome-
            8.   Eriksson J, Laine MK. Insulin therapy in the elderly with   wide association studies identifies eight new loci for type 2
               type 2 diabetes. Minerva Endocrinol. 2015;40(4):283-295.  diabetes in east Asians. Nat Genet. 2012;44(1):67-72.

            9.   Akerman I, Tu Z, Beucher A,  et al. Human pancreatic  β      doi: 10.1038/ng.1019
               cell lncRNAs control cell-specific regulatory networks. Cell   21.  Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci
               Metab. 2017;25(2):400-411.                         implicated in fasting glucose homeostasis and their impact on
               doi: 10.1016/j.cmet.2016.11.016                    type 2 diabetes risk. Nat Genet. 2010;42(2):105-116.
            10.  Feng J, Xing W, Xie L. Regulatory roles of microRNAs in      doi: 10.1038/ng.520
               diabetes. Int J Mol Sci. 2016;17(10):1729.      22.  Fadista J, Vikman P, Laakso EO, et al. Global genomic and
               doi: 10.3390/ijms17101729                          transcriptomic analysis of human pancreatic islets reveals
                                                                  novel genes influencing glucose metabolism. Proc Natl Acad
            11.  Guo J, Liu Z, Gong R. Long noncoding RNA: An emerging
               player in diabetes and diabetic kidney disease.  Clin Sci   Sci. 2014;111(38):13924-13929.
               (Lond). 2019;133(12):1321-1339.                    doi: 10.1073/pnas.1402665111
               doi: 10.1042/CS20190372                         23.  Xu B, Gerin I, Miao H, et al. Multiple roles for the non-
                                                                  coding RNA SRA in regulation of adipogenesis and insulin
            12.  He X, Ou C, Xiao Y, Han Q, Li H, Zhou S. LncRNAs: Key
               players and novel insights into diabetes mellitus. Oncotarget.   sensitivity. PLoS One. 2010;5(12):e14199.
               2017;8(41):71325-71341.                            doi: 10.1371/journal.pone.0014199
               doi: 10.18632/oncotarget.19921                  24.  Liu S, Xu R, Gerin I, et al. SRA regulates adipogenesis by


            Volume 4 Issue 2 (2025)                         11                              doi: 10.36922/gpd.4000
   26   27   28   29   30   31   32   33   34   35   36