Page 71 - GTM-2-3
P. 71
Global Translational Medicine Influence of ferroptosis in neurological diseases
mild cognitive impairment: A meta-analysis. Alzheimers Res networks. BMC Bioinformatics, 4: 2.
Ther, 14: 23.
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1186/s13195-022-00961-5
26. Maere S, Heymans K, Kuiper M, 2005, BiNGO: A cytoscape
15. Kuang F, Liu J, Tang D, et al., 2020, Oxidative damage and plugin to assess overrepresentation of gene ontology categories
antioxidant defense in ferroptosis. Front Cell Dev Biol, in biological networks. Bioinformatics, 21: 3448–3449.
8: 586578.
https://doi.org/10.1093/bioinformatics/bti551
https://doi.org/10.3389/fcell.2020.586578
27. Assenov Y, Ramírez F, Schelhorn SE, et al., 2008,
16. Guzman-Martinez L, Maccioni RB, Andrade V, et al., Computing topological parameters of biological networks.
2019, Neuroinflammation as a common feature of Bioinformatics, 24: 282–284.
neurodegenerative disorders. Front Pharmacol, 10: 1008.
https://doi.org/10.1093/bioinformatics/btm554
https://doi.org/10.3389/fphar.2019.01008
28. Zhou N, Bao J, 2020, FerrDb: A manually curated resource
17. Jankovic J, Tan EK, Parkinson’s disease: Etiopathogenesis and for regulators and markers of ferroptosis and ferroptosis-
treatment. J Neurol Neurosurg Psychiatry, 91: 795–808. disease associations. Database, 2020: baaa021.
https://doi.org/10.1136/jnnp-2019-322338 https://doi.org/10.1093/database/baaa021
18. Fernández-Mendívil C, Luengo E, Trigo-Alonso P, et al., 29. Han H, Cho JW, Lee S, et al., 2018, TRRUST v2: An expanded
2021, Protective role of microglial HO-1 blockade in aging: reference database of human and mouse transcriptional
Implication of iron metabolism. Redox Biol, 38: 101789. regulatory interactions. Nucleic Acids Res, 46: D380–D386.
https://doi.org/10.1016/j.redox.2020.101789 https://doi.org/10.1093/nar/gkx1013
19. Zhu Y, Wang B, Tao K, et al., 2017, Iron accumulation 30. Liu ZP, Wu C, Miao H, et al., 2015, RegNetwork:
and microglia activation contribute to substantia nigra An integrated database of transcriptional and post-
hyperechogenicity in the 6-OHDA-induced rat model of transcriptional regulatory networks in human and mouse.
Parkinson’s disease. Parkinsonism Relat Disord, 36: 76–82. Database (Oxford), 2015: bav095.
https://doi.org/10.1016/j.parkreldis.2017.01.003 https://doi.org/10.1093/database/bav095
20. Novgorodov SA, Voltin JR, Gooz MA, et al., 2018, Acid 31. Yoo M, Shin J, Kim J, et al., 2015, DSigDB: Drug signatures
sphingomyelinase promotes mitochondrial dysfunction database for gene set analysis. Bioinformatics, 31: 3069–3071.
due to glutamate-induced regulated necrosis. J Lipid Res, https://doi.org/10.1093/bioinformatics/btv313
59: 312–329.
32. Lelos M, 2020, Chapter 2 Overview of Alzheimer’s and
https://doi.org/10.1194/jlr.M080374
Parkinson’s diseases and the role of protein aggregation in
21. Guennewig B, Lim J, Marshall L, et al., 2021, Defining early these neurodegenerative diseases. In: Salgado AJ, editor.
changes in Alzheimer’s disease from RNA sequencing of brain Handbook of Innovations in Central Nervous System
regions differentially affected by pathology. Sci Rep, 11: 4865. Regenerative Medicine. Amsterdam: Elsevier, p29–53.
https://doi.org/10.1038/s41598-021-83872-z https://doi.org/10.1016/B978-0-12-818084-6.00002-7
22. Robinson MD, McCarthy DJ, Smyth GK, 2010, edgeR: 33. Kajiwara Y, McKenzie A, Dorr N, et al., 2016, The human-
A bioconductor package for differential expression analysis specific CASP4 gene product contributes to Alzheimer-
of digital gene expression data. Bioinformatics, 26: 139–140. related synaptic and behavioural deficits. Hum Mol Genet,
25: 4315–4327.
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/hmg/ddw265
23. Szklarczyk D, Gable AL, Nastou KC, et al., 2020, The
STRING database in 2021: Customizable protein-protein 34. Gambuzza ME, Sofo V, Salmeri FM, et al., 2014, Toll-like
networks, and functional characterization of user-uploaded receptors in Alzheimer’s disease: A therapeutic perspective.
gene/measurement sets. Nucleic Acids Res, 49: D605–D612. CNS Neurol Disord Drug Targets, 13: 1542–1558.
https://doi.org/10.1093/nar/gkaa1074 https://doi.org/10.2174/1871527313666140806124850
24. Shannon P, Markiel A, Ozier O, et al., 2003, Cytoscape: 35. Hernandez MX, Namiranian P, Nguyen E, et al., 2017, C5a
A software environment for integrated models. Genome Res, increases the injury to primary neurons elicited by fibrillar
13: 2498–2504. amyloid beta. ASN Neuro, 9.
https://doi.org/10.1101/gr.1239303.metabolite https://doi.org/10.1177/1759091416687871
25. Bader GD, Hogue CW, 2003, An automated method for 36. Boros FA, Vécsei L, Klivényi P, 2021, NEAT1 on the field
finding molecular complexes in large protein interaction of Parkinson’s disease: Offense, defense, or a player on the
Volume 2 Issue 3 (2023) 12 https://doi.org/10.36922/gtm.0318

