Page 71 - GTM-2-3
P. 71

Global Translational Medicine                                   Influence of ferroptosis in neurological diseases



               mild cognitive impairment: A meta-analysis. Alzheimers Res   networks. BMC Bioinformatics, 4: 2.
               Ther, 14: 23.
                                                                  https://doi.org/10.1186/1471-2105-4-2
               https://doi.org/10.1186/s13195-022-00961-5
                                                               26.  Maere S, Heymans K, Kuiper M, 2005, BiNGO: A cytoscape
            15.  Kuang F, Liu J, Tang D, et al., 2020, Oxidative damage and   plugin to assess overrepresentation of gene ontology categories
               antioxidant  defense  in  ferroptosis.  Front Cell Dev Biol,   in biological networks. Bioinformatics, 21: 3448–3449.
               8: 586578.
                                                                  https://doi.org/10.1093/bioinformatics/bti551
               https://doi.org/10.3389/fcell.2020.586578
                                                               27.  Assenov Y, Ramírez F, Schelhorn SE,  et al., 2008,
            16.  Guzman-Martinez L, Maccioni RB, Andrade V,  et al.,   Computing topological parameters of biological networks.
               2019, Neuroinflammation as a common feature of     Bioinformatics, 24: 282–284.
               neurodegenerative disorders. Front Pharmacol, 10: 1008.
                                                                  https://doi.org/10.1093/bioinformatics/btm554
               https://doi.org/10.3389/fphar.2019.01008
                                                               28.  Zhou N, Bao J, 2020, FerrDb: A manually curated resource
            17.  Jankovic J, Tan EK, Parkinson’s disease: Etiopathogenesis and   for regulators and markers of ferroptosis and ferroptosis-
               treatment. J Neurol Neurosurg Psychiatry, 91: 795–808.   disease associations. Database, 2020: baaa021.
               https://doi.org/10.1136/jnnp-2019-322338           https://doi.org/10.1093/database/baaa021
            18.  Fernández-Mendívil C, Luengo E, Trigo-Alonso P,  et al.,   29.  Han H, Cho JW, Lee S, et al., 2018, TRRUST v2: An expanded
               2021, Protective role of microglial HO-1 blockade in aging:   reference database of human and mouse transcriptional
               Implication of iron metabolism. Redox Biol, 38: 101789.  regulatory interactions. Nucleic Acids Res, 46: D380–D386.
               https://doi.org/10.1016/j.redox.2020.101789        https://doi.org/10.1093/nar/gkx1013
            19.  Zhu Y, Wang B, Tao K,  et al., 2017, Iron accumulation   30.  Liu ZP, Wu C, Miao H,  et al., 2015, RegNetwork:
               and microglia activation contribute to substantia nigra   An integrated database of transcriptional and post-
               hyperechogenicity in the 6-OHDA-induced rat model of   transcriptional regulatory networks in human and mouse.
               Parkinson’s disease. Parkinsonism Relat Disord, 36: 76–82.  Database (Oxford), 2015: bav095.
               https://doi.org/10.1016/j.parkreldis.2017.01.003     https://doi.org/10.1093/database/bav095
            20.  Novgorodov SA, Voltin JR, Gooz MA,  et  al., 2018, Acid   31.  Yoo M, Shin J, Kim J, et al., 2015, DSigDB: Drug signatures
               sphingomyelinase promotes mitochondrial dysfunction   database for gene set analysis. Bioinformatics, 31: 3069–3071.
               due  to  glutamate-induced  regulated necrosis.  J  Lipid Res,      https://doi.org/10.1093/bioinformatics/btv313
               59: 312–329.
                                                               32.  Lelos M, 2020, Chapter  2 Overview of Alzheimer’s and
               https://doi.org/10.1194/jlr.M080374
                                                                  Parkinson’s diseases and the role of protein aggregation in
            21.  Guennewig B, Lim J, Marshall L, et al., 2021, Defining early   these neurodegenerative diseases. In: Salgado AJ, editor.
               changes in Alzheimer’s disease from RNA sequencing of brain   Handbook of Innovations in Central Nervous System
               regions differentially affected by pathology. Sci Rep, 11: 4865.  Regenerative Medicine. Amsterdam: Elsevier, p29–53.
               https://doi.org/10.1038/s41598-021-83872-z         https://doi.org/10.1016/B978-0-12-818084-6.00002-7
            22.  Robinson MD, McCarthy DJ, Smyth GK, 2010, edgeR:   33.  Kajiwara Y, McKenzie A, Dorr N, et al., 2016, The human-
               A bioconductor package for differential expression analysis   specific CASP4 gene product contributes to Alzheimer-
               of digital gene expression data. Bioinformatics, 26: 139–140.  related synaptic and behavioural deficits. Hum Mol Genet,
                                                                  25: 4315–4327.
               https://doi.org/10.1093/bioinformatics/btp616
                                                                  https://doi.org/10.1093/hmg/ddw265
            23.  Szklarczyk  D,  Gable  AL,  Nastou  KC,  et al.,  2020,  The
               STRING database in 2021: Customizable protein-protein   34.  Gambuzza ME, Sofo V, Salmeri FM, et al., 2014, Toll-like
               networks, and functional characterization of user-uploaded   receptors in Alzheimer’s disease: A therapeutic perspective.
               gene/measurement sets. Nucleic Acids Res, 49: D605–D612.  CNS Neurol Disord Drug Targets, 13: 1542–1558.
               https://doi.org/10.1093/nar/gkaa1074               https://doi.org/10.2174/1871527313666140806124850
            24.  Shannon P, Markiel A, Ozier O,  et al., 2003, Cytoscape:   35.  Hernandez MX, Namiranian P, Nguyen E, et al., 2017, C5a
               A software environment for integrated models. Genome Res,   increases the injury to primary neurons elicited by fibrillar
               13: 2498–2504.                                     amyloid beta. ASN Neuro, 9.
               https://doi.org/10.1101/gr.1239303.metabolite      https://doi.org/10.1177/1759091416687871
            25.  Bader GD, Hogue CW, 2003, An automated method for   36.  Boros FA, Vécsei L, Klivényi P, 2021, NEAT1 on the field
               finding molecular complexes in large protein interaction   of Parkinson’s disease: Offense, defense, or a player on the


            Volume 2 Issue 3 (2023)                         12                       https://doi.org/10.36922/gtm.0318
   66   67   68   69   70   71   72   73   74   75   76