Page 72 - GTM-2-3
P. 72
Global Translational Medicine Influence of ferroptosis in neurological diseases
bench? J Parkinsons Dis, 11: 123–138. analysis. Front Mol Biosci, 9: 902607.
https://doi.org/10.3233/jpd-202374 https://doi.org/10.3389/fmolb.2022.902607
37. Venero JL, Burguillos MA, Brundin P, et al., 2011, The 48. Cressatti M, Song W, Turk AZ, et al., 2019, Glial HMOX1
executioners sing a new song: Killer caspases activate expression promotes central and peripheral α-synuclein
microglia. Cell Death Differ, 18: 1679–1691. dysregulation and pathogenicity in parkinsonian mice. Glia,
67: 1730–1744.
https://doi.org/10.1038/cdd.2011.107
https://doi.org/10.1002/glia.23645
38. Halbgebauer S, Nagl M, Klafki H, et al., 2016, Modified
serpinA1 as risk marker for Parkinson’s disease dementia: 49. Lan G, Wang P, Chan RB, et al., 2022, Astrocytic VEGFA:
Analysis of baseline data. Sci Rep, 6: 26145. An essential mediator in blood-brain-barrier disruption in
Parkinson’s disease. Glia, 70: 337–353.
https://doi.org/10.1038/srep26145
https://doi.org/10.1002/glia.24109
39. Peng X, Wang J, Peng W, et al., 2017, Protein-protein
interactions: Detection, reliability assessment and 50. KaoYC, Ho PC, Tu YK, et al., 2020, Lipids and Alzheimer’s
applications. Brief Bioinform, 18: 798–819. disease. Int J Mol Sci, 21: 1505.
https://doi.org/10.1093/bib/bbw066 https://doi.org/10.3390/ijms21041505
40. Szklarczyk D, Gable AL, Lyon D, et al., 2019, STRING 51. Lin Z, Liu J, Kang R, et al., 2021, Lipid metabolism in
v11: Protein-protein association networks with increased ferroptosis. Adv Biol, 5: e2100396.
coverage, supporting functional discovery in genome-wide https://doi.org/10.1002/adbi.202100396
experimental datasets. Nucleic Acids Res, 47: D607–D613.
52. Tang D, Chen X, Kang R, et al., 2021, Ferroptosis: Molecular
https://doi.org/10.1093/nar/gky1131 mechanisms and health implications. Cell Res, 31: 107–125.
41. Do Van B, Gouel F, Jonneaux A, et al., 2016, Ferroptosis, a https://doi.org/10.1038/s41422-020-00441-1
newly characterized form of cell death in Parkinson’s disease
that is regulated by PKC. Neurobiol Dis, 94: 169–178. 53. Tan JM, Wong ES, Lim KL, 2009, Protein misfolding and
aggregation in Parkinson’s disease. Antioxid Redox Signal,
https://doi.org/10.1016/j.nbd.2016.05.011 11: 2119–2134.
42. Han X, Zhu J, Zhang X, et al., 2018, Plin4-dependent lipid https://doi.org/10.1089/ars.2009.2490
droplets hamper neuronal mitophagy in the MPTP/p-
induced mouse model of Parkinson’s disease. Front Neurosci, 54. Pitale PM, Gorbatyuk O, Gorbatyuk M, 2017,
12: 397. Neurodegeneration: Keeping ATF4 on a tight leash. Front
Cell Neurosci, 11: 410.
https://doi.org/10.3389/fnins.2018.00397
https://doi.org/10.3389/fncel.2017.00410
43. Zhang X, Du L, Qiao Y, et al., 2019, Ferroptosis is governed
by differential regulation of transcription in liver cancer. 55. Xu X, Huang E, Tai Y, et al., 2017, Nupr1 modulates
Redox Biol, 24: 101211. methamphetamine-induced dopaminergic neuronal
apoptosis and autophagy through CHOP-Trib3-mediated
https://doi.org/10.1016/j.redox.2019.101211 endoplasmic reticulum stress signaling pathway. Front Mol
44. Song J, Liu Y, Guan X, et al., 2021, A novel ferroptosis-related Neurosci, 10: 203.
biomarker signature to predict overall survival of esophageal https://doi.org/10.3389/fnmol.2017.00203
squamous cell carcinoma. Front Mol Biosci, 8: 675193.
56. Santiago JA, Potashkin JA, 2015, Network-based
https://doi.org/10.3389/fmolb.2021.675193 metaanalysis identifies HNF4A and PTBP1 as longitudinally
45. Visser PJ, Reus LM, Gobom J, et al., 2022, Cerebrospinal fluid dynamic biomarkers for Parkinson’s disease. Proc Natl Acad
tau levels are associated with abnormal neuronal plasticity Sci U S A, 112: 2257–2262.
markers in Alzheimer’s disease. Mol. Neurodegener, 17: 27. https://doi.org/10.1073/pnas.1423573112
https://doi.org/10.1186/s13024-022-00521-3 57. Hernandes MS, Lassègue B, Yepes M, et al., 2016, Abstract
46. Liao S, Huang M, Liao Y, et al., 2023, HMOX1 promotes TP110: Polymerase δ-interacting protein 2 regulates
ferroptosis induced by erastin in lens epithelial cell through astrocyte activation in ischemic stroke. Stroke, 47: ATP110.
modulates Fe(2+) production. Curr Eye Res, 48: 25–33. https://doi.org/10.1161/str.47.suppl\_1.tp110
https://doi.org/10.1080/02713683.2022.2138450 58. Poonaki E, Kahlert UD, Meuth SG, et al., 2022, The role
of the ZEB1-neuroinflammation axis in CNS disorders.
47. Zhou Z, Lu J, Ma J, et al., 2022, Identification of potential
ferroptosis key genes in the pathogenesis of lumbosacral J Neuroinflammation, 19: 275.
spinal root avulsion by RNA sequencing and bioinformatics https://doi.org/10.1186/s12974-022-02636-2
Volume 2 Issue 3 (2023) 13 https://doi.org/10.36922/gtm.0318

