Page 73 - GTM-2-3
P. 73

Global Translational Medicine                                   Influence of ferroptosis in neurological diseases



            59.  Liu CC, Liu CC, Kanekiyo T, et al., 2013, Apolipoprotein E      https://doi.org/10.1038/s41593-022-01061-1
               and Alzheimer disease: Risk, mechanisms and therapy. Nat   66.  Jembrek MJ, Oršolić N, Mandić L,  et al., 2021, Anti-
               Rev Neurol, 9: 106–118.                            oxidative, anti-inflammatory and anti-apoptotic effects
               https://doi.org/10.1038/nrneurol.2012.263          of  flavonols:  Targeting  Nrf2,  NF-κB  and  p53  pathways
                                                                  in  neurodegeneration.  Antioxidants  (Basel, Switzerland),
            60.  Mathys H, Davila-Velderrain J, Peng Z, et al., 2019, Single-  10: 1628.
               cell transcriptomic analysis of Alzheimer’s disease. Nature,
               570: 332–337.                                      https://doi.org/10.3390/antiox10101628
               https://doi.org/10.1038/s41586-019-1195-2       67.  Liu J, Zhang C, Wang J,  et al., 2020, The regulation of
                                                                  ferroptosis by tumor suppressor p53 and its pathway. Int J
            61.  Kahl CR, Means AR, 2003, Regulation of cell cycle   Mol Sci, 21: 8387.
               progression by calcium/calmodulin-dependent pathways.
               Endocr Rev, 24: 719–736.                           https://doi.org/10.3390/ijms21218387
               https://doi.org/10.1210/er.2003-0008            68.  Li X, Hu Y, 2021, Attribution of NF-κB activity to CHUK/
                                                                  IKKα-involved carcinogenesis. Cancers (Basel), 13: 1411.
            62.  Lee SD, Tontonoz P, 2015, Liver X receptors at the intersection
               of lipid metabolism and atherogenesis.  Atherosclerosis,      https://doi.org/10.3390/cancers13061411
               242: 29–36.                                     69.  Krämer OH, Baus D, Knauer SK, et al., 2006, Acetylation of
                                                                  Stat1 modulates NF-kappaB activity. Genes Dev, 20: 473–485.
               https://doi.org/10.1016/j.atherosclerosis.2015.06.042
                                                                  https://doi.org/10.1101/gad.364306
            63.  Bellucci A, Bubacco L, Longhena F,  et al., 2020, Nuclear
               factor-κB dysregulation and α-synuclein pathology: Critical   70.  Li JY, Yao YM, Tian YP, 2021, Ferroptosis: A  trigger of
               interplay in the pathogenesis of Parkinson’s disease. Front   proinflammatory state progression to immunogenicity in
               Aging Neurosci, 12: 68.                            necroinflammatory disease. Front Immunol, 12: 701163.
               https://doi.org/10.3389/fnagi.2020.00068           https://doi.org/10.3389/fimmu.2021.701163

            64.  De  Rivero Vaccari J, Mejias NH,  Travascio F, 2017,  The   71.  Abdel-Salam OM, Youness ER, Mohammed NA,  et al.,
               NLRC4 inflammasome contributes to brain inflammaging.   2014, Citric acid effects on brain and liver oxidative stress in
               Innov Aging, 1: 978–979.                           lipopolysaccharide-treated mice. J Med Food, 17: 588–598.
               https://doi.org/10.1093/geroni/igx004.3534         https://doi.org/10.1089/jmf.2013.0065
            65.  Kamath T, Abdulraouf A, Burris SJ, et al., 2022, Single-cell   72.  Zhang M, Bian  Z, 2021, Alzheimer’s disease  and
               genomic profiling of human dopamine neurons identifies   microRNA-132: A  widespread pathological factor and
               a population that selectively degenerates in Parkinson’s   potential therapeutic target. Front Neurosci, 15:
               disease. Nat Neurosci, 25: 588–595.                https://doi.org/10.3389/fnins.2021.687973
































            Volume 2 Issue 3 (2023)                         14                       https://doi.org/10.36922/gtm.0318
   68   69   70   71   72   73   74   75   76   77   78