Page 73 - GTM-2-3
P. 73
Global Translational Medicine Influence of ferroptosis in neurological diseases
59. Liu CC, Liu CC, Kanekiyo T, et al., 2013, Apolipoprotein E https://doi.org/10.1038/s41593-022-01061-1
and Alzheimer disease: Risk, mechanisms and therapy. Nat 66. Jembrek MJ, Oršolić N, Mandić L, et al., 2021, Anti-
Rev Neurol, 9: 106–118. oxidative, anti-inflammatory and anti-apoptotic effects
https://doi.org/10.1038/nrneurol.2012.263 of flavonols: Targeting Nrf2, NF-κB and p53 pathways
in neurodegeneration. Antioxidants (Basel, Switzerland),
60. Mathys H, Davila-Velderrain J, Peng Z, et al., 2019, Single- 10: 1628.
cell transcriptomic analysis of Alzheimer’s disease. Nature,
570: 332–337. https://doi.org/10.3390/antiox10101628
https://doi.org/10.1038/s41586-019-1195-2 67. Liu J, Zhang C, Wang J, et al., 2020, The regulation of
ferroptosis by tumor suppressor p53 and its pathway. Int J
61. Kahl CR, Means AR, 2003, Regulation of cell cycle Mol Sci, 21: 8387.
progression by calcium/calmodulin-dependent pathways.
Endocr Rev, 24: 719–736. https://doi.org/10.3390/ijms21218387
https://doi.org/10.1210/er.2003-0008 68. Li X, Hu Y, 2021, Attribution of NF-κB activity to CHUK/
IKKα-involved carcinogenesis. Cancers (Basel), 13: 1411.
62. Lee SD, Tontonoz P, 2015, Liver X receptors at the intersection
of lipid metabolism and atherogenesis. Atherosclerosis, https://doi.org/10.3390/cancers13061411
242: 29–36. 69. Krämer OH, Baus D, Knauer SK, et al., 2006, Acetylation of
Stat1 modulates NF-kappaB activity. Genes Dev, 20: 473–485.
https://doi.org/10.1016/j.atherosclerosis.2015.06.042
https://doi.org/10.1101/gad.364306
63. Bellucci A, Bubacco L, Longhena F, et al., 2020, Nuclear
factor-κB dysregulation and α-synuclein pathology: Critical 70. Li JY, Yao YM, Tian YP, 2021, Ferroptosis: A trigger of
interplay in the pathogenesis of Parkinson’s disease. Front proinflammatory state progression to immunogenicity in
Aging Neurosci, 12: 68. necroinflammatory disease. Front Immunol, 12: 701163.
https://doi.org/10.3389/fnagi.2020.00068 https://doi.org/10.3389/fimmu.2021.701163
64. De Rivero Vaccari J, Mejias NH, Travascio F, 2017, The 71. Abdel-Salam OM, Youness ER, Mohammed NA, et al.,
NLRC4 inflammasome contributes to brain inflammaging. 2014, Citric acid effects on brain and liver oxidative stress in
Innov Aging, 1: 978–979. lipopolysaccharide-treated mice. J Med Food, 17: 588–598.
https://doi.org/10.1093/geroni/igx004.3534 https://doi.org/10.1089/jmf.2013.0065
65. Kamath T, Abdulraouf A, Burris SJ, et al., 2022, Single-cell 72. Zhang M, Bian Z, 2021, Alzheimer’s disease and
genomic profiling of human dopamine neurons identifies microRNA-132: A widespread pathological factor and
a population that selectively degenerates in Parkinson’s potential therapeutic target. Front Neurosci, 15:
disease. Nat Neurosci, 25: 588–595. https://doi.org/10.3389/fnins.2021.687973
Volume 2 Issue 3 (2023) 14 https://doi.org/10.36922/gtm.0318

