Page 66 - GTM-2-4
P. 66

Global Translational Medicine                                        Epigenetics on cardiovascular diseases



               symptomatic and asymptomatic atherosclerosis in humans   2021, DNA methylation biomarkers of myocardial infarction
               in vivo. Atherosclerosis, 254: 228–236.            and cardiovascular disease. Clin Epigenetics, 13: 86.
               https://doi.org/10.1016/j.atherosclerosis.2016.10.019     https://doi.org/10.1186/s13148-021-01078-6
            55.  Valencia-Morales MDP, Zaina S, Heyn H, et al., 2015, The   66.  ENCODE Project Consortium, 2012, An integrated
               DNA methylation drift of the atherosclerotic aorta increases   encyclopedia of DNA elements in the human genome.
               with lesion progression. BMC Med Genomics, 8: 7.   Nature, 489: 57–74.
               https://doi.org/10.1186/s12920-015-0085-1          https://doi.org/10.1038/nature11247
            56.  Cazaly E, Saad J, Wang W,  et al., 2019, Making sense of   67.  Janssen KA, Sidoli S, Garcia BA, 2017, Recent achievements
               the epigenome using data integration approaches.  Front   in characterizing the histone code and approaches to
               Pharmacol, 10: 126.                                integrating epigenomics and systems biology.  Methods
                                                                  Enzymol, 586: 359–378.
               https://doi.org/10.3389/fphar.2019.00126
                                                                  https://doi.org/10.1016/bs.mie.2016.10.021
            57.  Romano G, Veneziano D, Nigita G,  et al., 2018, RNA
               methylation in ncRNA: Classes, detection, and molecular   68.  Jun Q, Youhong L, Yuan Z, et al., 2022, Histone modification
               associations. Front Genet, 9: 243.                 of endothelial-mesenchymal transition in cardiovascular
                                                                  diseases. Front Cardiovasc Med, 9: 1022988.
               https://doi.org/10.3389/fgene.2018.00243
                                                                  https://doi.org/10.3389/fcvm.2022.1022988
            58.  Pidsley R, Zotenko E, Peters TJ,  et al., 2016, Critical
               evaluation of the illumina methylation EPIC beadchip   69.  Lecce  L, Xu  Y,  V’Gangula  B,  et al.,  2021,  Histone
               microarray for whole-genome DNA methylation profiling.   deacetylase 9 promotes endothelial-mesenchymal transition
               Genome Biol, 17: 208.                              and an unfavorable atherosclerotic plaque phenotype. J Clin
                                                                  Invest, 131: e131178.
               https://doi.org/10.1186/s13059-016-1066-1
                                                                  https://doi.org/10.1172/JCI131178
            59.  Kumar A, Kumar S, Vikram A,  et al., 2013, Histone and
               DNA methylation-mediated epigenetic downregulation of   70.  Zampetaki A, Zeng L, Margariti A,  et al., 2010, Histone
               endothelial Kruppel-like factor 2 by low-density lipoprotein   deacetylase 3 is critical in endothelial survival and
               cholesterol. Arterioscler Thromb Vasc Biol, 33: 1936–1942.   atherosclerosis development in response to disturbed flow.
                                                                  Circulation, 121: 132–142.
               https://doi.org/10.1161/ATVBAHA.113.301765
                                                                  https://doi.org/10.1161/CIRCULATIONAHA.109.890491
            60.  Jiang YZ, Jiménez JM, Ou K,  et al., 2014, Hemodynamic
               disturbed flow induces differential DNA methylation of   71.  Findeisen HM, Gizard F, Zhao Y,  et al., 2011, Epigenetic
               endothelial Kruppel-like factor 4 promoter  in vitro and   regulation of vascular smooth muscle cell proliferation and
               in vivo. Circ Res, 115: 32–43.                     neointima formation by histone deacetylase inhibition.
                                                                  Arterioscler Thromb Vasc Biol, 31: 851–860.
               https://doi.org/10.1161/CIRCRESAHA.115.303883
                                                                  https://doi.org/10.1161/ATVBAHA.110.221952
            61.  Jiang D, Sun M, You L, et al., 2019, DNA methylation and
               hydroxymethylation  are  associated with the  degree  of   72.  Greißel  A, Culmes  M, Burgkart R,  et al., 2016,  Histone
               coronary atherosclerosis in elderly patients with coronary   acetylation and methylation significantly change with
               heart disease. Life Sci, 224: 241–248.             severity of atherosclerosis in human carotid plaques.
                                                                  Cardiovasc Pathol, 25: 79–86.
               https://doi.org/10.1016/j.lfs.2019.03.021
                                                                  https://doi.org/10.1016/j.carpath.2015.11.001
            62.  Zhang Y, Zeng C, 2016, Role of DNA methylation in
               cardiovascular diseases. Clin Exp Hypertens, 38: 261–267.   73.  Yang Y, Luan Y, Yuan RX, et al., 2021, Histone methylation
                                                                  related therapeutic challenge in cardiovascular diseases.
               https://doi.org/10.3109/10641963.2015.1107087      Front Cardiovasc Med, 8: 710053.
            63.  Zhang Y, Jia Z, Zhou Q, et al., 2022, A bibliometric analysis      https://doi.org/10.3389/fcvm.2021.710053
               of DNA methylation in cardiovascular diseases from 2001 to
               2021. Medicine (Baltimore), 101: e30029.        74.  Santulli G, 2023, Non-coding RNAs in clinical practice:
                                                                  From biomarkers to therapeutic tools. J Pharmacol Exp Ther,
               https://doi.org/10.1097/MD.0000000000030029        384: 225–226.
            64.  Palou-Márquez G, Subirana I, Nonell L,  et al., 2021,      https://doi.org/10.1124/jpet.122.001457
               DNA  methylation and  gene expression  integration in   75.  Valencia-Sanchez MA, Liu J, Hannon GJ,  et al., 2006,
               cardiovascular disease. Clin Epigenetics, 13: 75.
                                                                  Control of translation and mRNA degradation by miRNAs
               https://doi.org/10.1186/s13148-021-01064-y         and siRNAs. Genes Dev, 20: 515–524.
            65.  Fernández-Sanlés  A,  Sayols-Baixeras  S,  Subirana  I,  et al.,      https://doi.org/10.1101/gad.1399806


            Volume 2 Issue 4 (2023)                         17                       https://doi.org/10.36922/gtm.1868
   61   62   63   64   65   66   67   68   69   70   71