Page 66 - GTM-2-4
P. 66
Global Translational Medicine Epigenetics on cardiovascular diseases
symptomatic and asymptomatic atherosclerosis in humans 2021, DNA methylation biomarkers of myocardial infarction
in vivo. Atherosclerosis, 254: 228–236. and cardiovascular disease. Clin Epigenetics, 13: 86.
https://doi.org/10.1016/j.atherosclerosis.2016.10.019 https://doi.org/10.1186/s13148-021-01078-6
55. Valencia-Morales MDP, Zaina S, Heyn H, et al., 2015, The 66. ENCODE Project Consortium, 2012, An integrated
DNA methylation drift of the atherosclerotic aorta increases encyclopedia of DNA elements in the human genome.
with lesion progression. BMC Med Genomics, 8: 7. Nature, 489: 57–74.
https://doi.org/10.1186/s12920-015-0085-1 https://doi.org/10.1038/nature11247
56. Cazaly E, Saad J, Wang W, et al., 2019, Making sense of 67. Janssen KA, Sidoli S, Garcia BA, 2017, Recent achievements
the epigenome using data integration approaches. Front in characterizing the histone code and approaches to
Pharmacol, 10: 126. integrating epigenomics and systems biology. Methods
Enzymol, 586: 359–378.
https://doi.org/10.3389/fphar.2019.00126
https://doi.org/10.1016/bs.mie.2016.10.021
57. Romano G, Veneziano D, Nigita G, et al., 2018, RNA
methylation in ncRNA: Classes, detection, and molecular 68. Jun Q, Youhong L, Yuan Z, et al., 2022, Histone modification
associations. Front Genet, 9: 243. of endothelial-mesenchymal transition in cardiovascular
diseases. Front Cardiovasc Med, 9: 1022988.
https://doi.org/10.3389/fgene.2018.00243
https://doi.org/10.3389/fcvm.2022.1022988
58. Pidsley R, Zotenko E, Peters TJ, et al., 2016, Critical
evaluation of the illumina methylation EPIC beadchip 69. Lecce L, Xu Y, V’Gangula B, et al., 2021, Histone
microarray for whole-genome DNA methylation profiling. deacetylase 9 promotes endothelial-mesenchymal transition
Genome Biol, 17: 208. and an unfavorable atherosclerotic plaque phenotype. J Clin
Invest, 131: e131178.
https://doi.org/10.1186/s13059-016-1066-1
https://doi.org/10.1172/JCI131178
59. Kumar A, Kumar S, Vikram A, et al., 2013, Histone and
DNA methylation-mediated epigenetic downregulation of 70. Zampetaki A, Zeng L, Margariti A, et al., 2010, Histone
endothelial Kruppel-like factor 2 by low-density lipoprotein deacetylase 3 is critical in endothelial survival and
cholesterol. Arterioscler Thromb Vasc Biol, 33: 1936–1942. atherosclerosis development in response to disturbed flow.
Circulation, 121: 132–142.
https://doi.org/10.1161/ATVBAHA.113.301765
https://doi.org/10.1161/CIRCULATIONAHA.109.890491
60. Jiang YZ, Jiménez JM, Ou K, et al., 2014, Hemodynamic
disturbed flow induces differential DNA methylation of 71. Findeisen HM, Gizard F, Zhao Y, et al., 2011, Epigenetic
endothelial Kruppel-like factor 4 promoter in vitro and regulation of vascular smooth muscle cell proliferation and
in vivo. Circ Res, 115: 32–43. neointima formation by histone deacetylase inhibition.
Arterioscler Thromb Vasc Biol, 31: 851–860.
https://doi.org/10.1161/CIRCRESAHA.115.303883
https://doi.org/10.1161/ATVBAHA.110.221952
61. Jiang D, Sun M, You L, et al., 2019, DNA methylation and
hydroxymethylation are associated with the degree of 72. Greißel A, Culmes M, Burgkart R, et al., 2016, Histone
coronary atherosclerosis in elderly patients with coronary acetylation and methylation significantly change with
heart disease. Life Sci, 224: 241–248. severity of atherosclerosis in human carotid plaques.
Cardiovasc Pathol, 25: 79–86.
https://doi.org/10.1016/j.lfs.2019.03.021
https://doi.org/10.1016/j.carpath.2015.11.001
62. Zhang Y, Zeng C, 2016, Role of DNA methylation in
cardiovascular diseases. Clin Exp Hypertens, 38: 261–267. 73. Yang Y, Luan Y, Yuan RX, et al., 2021, Histone methylation
related therapeutic challenge in cardiovascular diseases.
https://doi.org/10.3109/10641963.2015.1107087 Front Cardiovasc Med, 8: 710053.
63. Zhang Y, Jia Z, Zhou Q, et al., 2022, A bibliometric analysis https://doi.org/10.3389/fcvm.2021.710053
of DNA methylation in cardiovascular diseases from 2001 to
2021. Medicine (Baltimore), 101: e30029. 74. Santulli G, 2023, Non-coding RNAs in clinical practice:
From biomarkers to therapeutic tools. J Pharmacol Exp Ther,
https://doi.org/10.1097/MD.0000000000030029 384: 225–226.
64. Palou-Márquez G, Subirana I, Nonell L, et al., 2021, https://doi.org/10.1124/jpet.122.001457
DNA methylation and gene expression integration in 75. Valencia-Sanchez MA, Liu J, Hannon GJ, et al., 2006,
cardiovascular disease. Clin Epigenetics, 13: 75.
Control of translation and mRNA degradation by miRNAs
https://doi.org/10.1186/s13148-021-01064-y and siRNAs. Genes Dev, 20: 515–524.
65. Fernández-Sanlés A, Sayols-Baixeras S, Subirana I, et al., https://doi.org/10.1101/gad.1399806
Volume 2 Issue 4 (2023) 17 https://doi.org/10.36922/gtm.1868

