Page 69 - GTM-2-4
P. 69
Global Translational Medicine Epigenetics on cardiovascular diseases
long non-coding RNA GAS6-AS1 screens and predicts functions and specific roles of circRNAs in the cardiovascular
acute myocardial infarction. Anatol J Cardiol, 27: 167–172. system. Noncoding RNA Res, 3: 75–98.
https://doi.org/10.14744/AnatolJCardiol.2022.2496 https://doi.org/10.1016/j.ncrna.2018.05.002. Erratumin:
Noncoding RNA Res, 2020, 5: 220–221.
123. Shi H, Nguyen T, Zhao Q, et al., 2023, Discovery of
transacting long noncoding RNAs that regulate smooth 135. Dodbele S, Mutlu N, Wilusz JE, 2021, Best practices to
muscle cell phenotype. Circ Res, 132: 795–811. ensure robust investigation of circular RNAs: Pitfalls and
https://doi.org/10.1161/CIRCRESAHA.122.321960 tips. EMBO Rep, 22: e52072.
124. Xun M, Zhang J, Wu M, et al., 2023, Long non-coding RNAs: https://doi.org/10.15252/embr.202052072
The growth controller of vascular smooth muscle cells in 136. Ju M, Kim D, Son G, et al., 2023, Circular RNAs in and out
cardiovascular diseases. Int J Biochem Cell Biol, 157: 106392. of cells: Therapeutic usages of circular RNAs. Mol Cells,
https://doi.org/10.1016/j.biocel.2023.106392 46: 33–40.
125. Jakubik D, Fitas A, Eyileten C, et al., 2021, MicroRNAs and https://doi.org/10.14348/molcells.2023.2170
long non-coding RNAs in the pathophysiological processes 137. Xiao MS, Ai Y, Wilusz JE, 2020, Biogenesis and functions of
of diabetic cardiomyopathy: Emerging biomarkers and circular RNAs come into focus. Trends Cell Biol, 30: 226–240.
potential therapeutics. Cardiovasc Diabetol, 20: 55.
https://doi.org/10.1016/j.tcb.2019.12.004
https://doi.org/10.1186/s12933-021-01245-2
138. Münzel T, Hahad O, Sørensen M, et al., 2022, Environmental
126. Li C, Wang D, Jiang Z, et al., 2022, Non-coding RNAs in risk factors and cardiovascular diseases: A comprehensive
diabetes mellitus and diabetic cardiovascular disease. Front expert review. Cardiovasc Res, 118: 2880–2902.
Endocrinol (Lausanne), 13: 961802.
https://doi.org/10.1093/cvr/cvab316
https://doi.org/10.3389/fendo.2022.961802
139. Beekman M, Nederstigt C, Suchiman HED, et al., 2010,
127. Yang T, Long T, Du T, et al., 20212, Circle the cardiac Genome-wide association study (GWAS) - identified disease
remodeling with circRNAs. Front Cardiovasc Med, 8: 702586. risk alleles do not compromise human longevity. Proc Natl
https://doi.org/10.3389/fcvm.2021.702586 Acad Sci U S A, 107: 18046–18049.
128. Qu S, Zhong Y, Shang R, et al., 2017, The emerging landscape https://doi.org/10.1073/pnas.1003540107
of circular RNA in life processes. RNA Biol, 14: 992–999. 140. Eichler EE, Flint J, Gibson G, et al., 2010, Missing heritability
https://doi.org/10.1080/15476286.2016.1220473 and strategies for finding the underlying causes of complex
disease. Nat Rev Genet, 11: 446–450.
129. Wilusz JE, 2018, A 360° view of circular RNAs: From
biogenesis to functions. Wiley Interdiscip Rev RNA, 9: e1478. https://doi.org/10.1038/nrg2809
https://doi.org/10.1002/wrna.1478 141. Udali S, Guarini P, Moruzzi S, et al., 2013, Cardiovascular
epigenetics: From DNA methylation to microRNAs. Mol
130. Wen G, Zhou T, Gu W, 2021, The potential of using blood Aspects Med, 34: 883–901.
circular RNA as liquid biopsy biomarker for human diseases.
Protein Cell, 12: 911–946. https://doi.org/10.1016/j.mam.2012.08.001
https://doi.org/10.1007/s13238-020-00799-3 142. Lloyd-Jones DM, Hong Y, Labarthe D, et al., 2010, Defining
and setting national goals for cardiovascular health
131. Wen C, Li B, Nie L, et al., 2022, Emerging roles of extracellular promotion and disease reduction: The American Heart
vesicle-delivered circular RNAs in atherosclerosis. Front Cell Association’s strategic Impact Goal through 2020 and
Dev Biol, 10: 804247. beyond. Circulation, 121: 586–613.
https://doi.org/10.3389/fcell.2022.804247
https://doi.org/10.1161/CIRCULATIONAHA.109.192703
132. Ward Z, Pearson J, Schmeier S, et al., 2021, Insights into 143. Joyce BT, Gao T, Zheng Y, et al., 2021, Epigenetic age
circular RNAs: their biogenesis, detection, and emerging acceleration reflects long-term cardiovascular health. Circ
role in cardiovascular disease. RNA Biol, 18: 2055–2072. Res, 129: 770–781.
https://doi.org/10.1080/15476286.2021.1891393
https://doi.org/10.1161/CIRCRESAHA.121.318965
133. Yu Z, Huang Q, Zhang Q, et al., 2021, CircRNAs open a new 144. Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER,
era in the study of cardiovascular disease (Review). Int J Mol 2015, Modeling the epigenetic attractors landscape: Toward
Med, 47: 49–64.
a post-genomic mechanistic understanding of development.
https://doi.org/10.3892/ijmm.2020.4792 Front Genet, 6: 160.
134. Holdt LM, Kohlmaier A, Teupser D, 2018, Molecular https://doi.org/10.3389/fgene.2015.00160
Volume 2 Issue 4 (2023) 20 https://doi.org/10.36922/gtm.1868

