Page 69 - GTM-2-4
P. 69

Global Translational Medicine                                        Epigenetics on cardiovascular diseases



               long non-coding RNA GAS6-AS1 screens and predicts   functions and specific roles of circRNAs in the cardiovascular
               acute myocardial infarction. Anatol J Cardiol, 27: 167–172.   system. Noncoding RNA Res, 3: 75–98.
               https://doi.org/10.14744/AnatolJCardiol.2022.2496     https://doi.org/10.1016/j.ncrna.2018.05.002. Erratumin:
                                                                  Noncoding RNA Res, 2020, 5: 220–221.
            123. Shi H, Nguyen T, Zhao Q,  et al., 2023, Discovery of
               transacting long noncoding RNAs  that  regulate  smooth   135. Dodbele S, Mutlu N, Wilusz JE, 2021, Best practices to
               muscle cell phenotype. Circ Res, 132: 795–811.     ensure robust investigation of circular RNAs: Pitfalls and
               https://doi.org/10.1161/CIRCRESAHA.122.321960      tips. EMBO Rep, 22: e52072.
            124. Xun M, Zhang J, Wu M, et al., 2023, Long non-coding RNAs:      https://doi.org/10.15252/embr.202052072
               The growth controller of vascular smooth muscle cells in   136. Ju M, Kim D, Son G, et al., 2023, Circular RNAs in and out
               cardiovascular diseases. Int J Biochem Cell Biol, 157: 106392.   of cells: Therapeutic usages of circular RNAs.  Mol Cells,
               https://doi.org/10.1016/j.biocel.2023.106392       46: 33–40.
            125. Jakubik D, Fitas A, Eyileten C, et al., 2021, MicroRNAs and      https://doi.org/10.14348/molcells.2023.2170
               long non-coding RNAs in the pathophysiological processes   137. Xiao MS, Ai Y, Wilusz JE, 2020, Biogenesis and functions of
               of diabetic cardiomyopathy: Emerging biomarkers and   circular RNAs come into focus. Trends Cell Biol, 30: 226–240.
               potential therapeutics. Cardiovasc Diabetol, 20: 55.
                                                                  https://doi.org/10.1016/j.tcb.2019.12.004
               https://doi.org/10.1186/s12933-021-01245-2
                                                               138. Münzel T, Hahad O, Sørensen M, et al., 2022, Environmental
            126. Li C, Wang D, Jiang Z, et al., 2022, Non-coding RNAs in   risk factors and cardiovascular diseases: A comprehensive
               diabetes mellitus and diabetic cardiovascular disease. Front   expert review. Cardiovasc Res, 118: 2880–2902.
               Endocrinol (Lausanne), 13: 961802.
                                                                  https://doi.org/10.1093/cvr/cvab316
               https://doi.org/10.3389/fendo.2022.961802
                                                               139. Beekman M, Nederstigt C, Suchiman HED,  et al., 2010,
            127. Yang T, Long T, Du T,  et al., 20212, Circle the cardiac   Genome-wide association study (GWAS) - identified disease
               remodeling with circRNAs. Front Cardiovasc Med, 8: 702586.   risk alleles do not compromise human longevity. Proc Natl
               https://doi.org/10.3389/fcvm.2021.702586           Acad Sci U S A, 107: 18046–18049.
            128. Qu S, Zhong Y, Shang R, et al., 2017, The emerging landscape      https://doi.org/10.1073/pnas.1003540107
               of circular RNA in life processes. RNA Biol, 14: 992–999.   140. Eichler EE, Flint J, Gibson G, et al., 2010, Missing heritability
               https://doi.org/10.1080/15476286.2016.1220473      and strategies for finding the underlying causes of complex
                                                                  disease. Nat Rev Genet, 11: 446–450.
            129. Wilusz JE, 2018, A 360° view of circular RNAs: From
               biogenesis to functions. Wiley Interdiscip Rev RNA, 9: e1478.      https://doi.org/10.1038/nrg2809
               https://doi.org/10.1002/wrna.1478               141. Udali S, Guarini P, Moruzzi S, et al., 2013, Cardiovascular
                                                                  epigenetics: From DNA methylation to microRNAs.  Mol
            130. Wen G, Zhou T, Gu W, 2021, The potential of using blood   Aspects Med, 34: 883–901.
               circular RNA as liquid biopsy biomarker for human diseases.
               Protein Cell, 12: 911–946.                         https://doi.org/10.1016/j.mam.2012.08.001
               https://doi.org/10.1007/s13238-020-00799-3      142. Lloyd-Jones DM, Hong Y, Labarthe D, et al., 2010, Defining
                                                                  and setting national goals for cardiovascular health
            131. Wen C, Li B, Nie L, et al., 2022, Emerging roles of extracellular   promotion and disease reduction: The American Heart
               vesicle-delivered circular RNAs in atherosclerosis. Front Cell   Association’s strategic Impact Goal through 2020 and
               Dev Biol, 10: 804247.                              beyond. Circulation, 121: 586–613.
               https://doi.org/10.3389/fcell.2022.804247
                                                                  https://doi.org/10.1161/CIRCULATIONAHA.109.192703
            132. Ward Z, Pearson J, Schmeier S,  et al., 2021, Insights into   143. Joyce BT, Gao T, Zheng Y,  et al., 2021, Epigenetic age
               circular RNAs: their biogenesis, detection, and emerging   acceleration reflects long-term cardiovascular health. Circ
               role in cardiovascular disease. RNA Biol, 18: 2055–2072.   Res, 129: 770–781.
               https://doi.org/10.1080/15476286.2021.1891393
                                                                  https://doi.org/10.1161/CIRCRESAHA.121.318965
            133. Yu Z, Huang Q, Zhang Q, et al., 2021, CircRNAs open a new   144. Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER,
               era in the study of cardiovascular disease (Review). Int J Mol   2015, Modeling the epigenetic attractors landscape: Toward
               Med, 47: 49–64.
                                                                  a post-genomic mechanistic understanding of development.
               https://doi.org/10.3892/ijmm.2020.4792             Front Genet, 6: 160.
            134. Holdt LM, Kohlmaier A, Teupser D, 2018, Molecular      https://doi.org/10.3389/fgene.2015.00160


            Volume 2 Issue 4 (2023)                         20                       https://doi.org/10.36922/gtm.1868
   64   65   66   67   68   69   70   71   72   73   74