Page 67 - GTM-2-4
P. 67
Global Translational Medicine Epigenetics on cardiovascular diseases
76. Ferreira HJ, Esteller M, 2018, Non-coding RNAs, epigenetics, 88. Demirtas D, Demirtas AO, Biskin A, et al., 2018, Micro-
and cancer: Tying it all together. Cancer Metastasis Rev, RNA in health and disease. Int J Cardiol Res, 5: 116–123.
37: 55–73.
https://doi.org/10.19070/2470-4563-1800020
https://doi.org/10.1007/s10555-017-9715-8
89. Kong D, Duan Y, Wang J, et al., 2022, A functional
77. Macvanin MT, Zafirovic S, Obradovic M, et al., 2023, polymorphism of microRNA-143 is associated with the risk
Editorial: Non-coding RNA in diabetes and cardiovascular of type 2 diabetes mellitus in the northern Chinese Han
diseases. Front Endocrinol (Lausanne), 14: 1149857. population. Front Endocrinol (Lausanne), 13: 994953.
https://doi.org/10.3389/fendo.2023.1149857 https://doi.org/10.3389/fendo.2022.994953
78. Kristensen LS, Wojdacz TK, Thestrup BB, et al., 2009, 90. Zheng B, Xi Z, Liu R, et al., 2018, The function of microRNAs
Quality assessment of DNA derived from up to 30 years in B-cell development, lymphoma, and their potential in
old formalin fixed paraffin embedded (FFPE) tissue for clinical practice. Front Immunol, 9: 936.
PCR-based methylation analysis using SMART-MSP and
MS-HRM. BMC Cancer, 9: 453. https://doi.org/10.3389/fimmu.2018.00936
91. Raitoharju E, Oksala N, Lehtimäki T, 2013, MicroRNAs in
https://doi.org/10.1186/1471-2407-9-453
the atherosclerotic plaque. Clin Chem, 59: 1708–1721.
79. He L, Hannon G, 2004, MicroRNAs: Small RNAs with a big
role in gene regulation. Nat Rev Genet, 5: 522–531. https://doi.org/10.1373/clinchem.2013.2049170
92. de Yébenes VG, Briones AM, Martos-Folgado I, et al., 2020,
https://doi.org/10.1038/nrg1379
Aging-associated miR-217 aggravates atherosclerosis and
80. Akhtar MM, Micolucci L, Islam MS, et al., 2016, promotes cardiovascular dysfunction. Arterioscler Thromb
Bioinformatic tools for microRNA dissection. Nucleic Acids Vasc Biol, 40: 2408–2424.
Res, 44: 24–44.
https://doi.org/10.1161/ATVBAHA.120.314333
https://doi.org/10.1093/nar/gkv1221
93. Tao J, Xia L, Cai Z, et al., 2021, Interaction Between
81. Treiber T, Treiber N, Meister G, 2019, Regulation of microRNA and DNA methylation in atherosclerosis. DNA
microRNA biogenesis and its crosstalk with other cellular Cell Biol, 40: 101–115.
pathways. Nat Rev Mol Cell Biol, 20: 5–20.
https://doi.org/10.1089/dna.2020.6138
https://doi.org/10.1038/s41580-018-0059-1. Erratum in:
Nat Rev Mol Cell Biol, 2018, 19: 808. Erratum in: Nat Rev 94. Yang X, Chen Y, Feng C, et al., 2018, MicroRNA-216a
Mol Cell Biol, 2019, 20: 321. induces endothelial senescence and inflammation via
Smad3/IκBα pathway. J Cell Mol Med, 22: 2739–2749.
82. Bartel DP, 2018, Metazoan microRNAs. Cell, 173: 20–51.
https://doi.org/10.1111/jcmm.13567
https://doi.org/10.1016/j.cell.2018.03.006
95. Chen J, Xu L, Hu Q, et al., 2015, MiR-17-5p as circulating
83. Laggerbauer B, Engelhardt S, 2022, MicroRNAs as biomarkers for the severity of coronary atherosclerosis in
therapeutic targets in cardiovascular disease. J Clin Invest, coronary artery disease. Int J Cardiol, 197: 123–124.
132: e159179.
https://doi.org/10.1016/j.ijcard.2015.06.037
https://doi.org/10.1172/JCI159179
96. Li S, Lee C, Song J, et al., 2017, Circulating microRNAs
84. Kozomara A, Birgaoanu M, Griffiths-Jones S, 2019, as potential biomarkers for coronary plaque rupture.
miRBase: From microRNA sequences to function. Nucleic Oncotarget, 8: 48145–48156.
Acids Res, 47: D155–D162.
https://doi.org/10.18632/oncotarget.18308
https://doi.org/10.1093/nar/gky1141
97. Mao Z, Wu F, Shan Y, 2018, Identification of key genes and
85. Kim K, Baek SC, Lee YY, et al., 2021, A quantitative map miRNAs associated with carotid atherosclerosis based on
of human primary microRNA processing sites. Mol Cell, mRNA-seq data. Medicine (Baltimore), 97: e9832.
81: 3422–3439.e11.
https://doi.org/10.1097/MD.0000000000009832
https://doi.org/10.1016/j.molcel.2021.07.002
98. Reddy S, Hu DQ, Zhao M, et al., 2017, miR-21 is associated
86. Fernández-Hernando C, Baldán A, 2013, MicroRNAs and with fibrosis and right ventricular failure. JCI Insight, 2:
cardiovascular disease. Curr Genet Med Rep, 1: 30–38. e91625.
https://doi.org/10.1007/s40142-013-0008-4 https://doi.org/10.1172/jci.insight.91625
87. Bartel DP, 2004, MicroRNAs: Genomics, biogenesis, 99. Petrovic N, Ergun S, 2018, miRNAs as potential treatment
mechanism, and function. Cell, 116: 281–297.
targets and treatment options in cancer. Mol Diagn Ther,
https://doi.org/10.1016/s0092-8674(04)00045-5 22: 157–168.
Volume 2 Issue 4 (2023) 18 https://doi.org/10.36922/gtm.1868

