Page 67 - GTM-2-4
P. 67

Global Translational Medicine                                        Epigenetics on cardiovascular diseases



            76.  Ferreira HJ, Esteller M, 2018, Non-coding RNAs, epigenetics,   88.  Demirtas D, Demirtas AO, Biskin A,  et al., 2018, Micro-
               and cancer: Tying it all together.  Cancer Metastasis Rev,   RNA in health and disease. Int J Cardiol Res, 5: 116–123.
               37: 55–73.
                                                                  https://doi.org/10.19070/2470-4563-1800020
               https://doi.org/10.1007/s10555-017-9715-8
                                                               89.  Kong D, Duan Y, Wang J,  et al., 2022, A functional
            77.  Macvanin MT, Zafirovic S, Obradovic M,  et al., 2023,   polymorphism of microRNA-143 is associated with the risk
               Editorial: Non-coding RNA in diabetes and cardiovascular   of type  2 diabetes mellitus in the northern Chinese Han
               diseases. Front Endocrinol (Lausanne), 14: 1149857.   population. Front Endocrinol (Lausanne), 13: 994953.
               https://doi.org/10.3389/fendo.2023.1149857         https://doi.org/10.3389/fendo.2022.994953
            78.  Kristensen  LS,  Wojdacz  TK,  Thestrup  BB,  et al.,  2009,   90.  Zheng B, Xi Z, Liu R, et al., 2018, The function of microRNAs
               Quality assessment of DNA derived from up to 30  years   in B-cell development, lymphoma, and their potential in
               old  formalin  fixed  paraffin  embedded  (FFPE)  tissue  for   clinical practice. Front Immunol, 9: 936.
               PCR-based methylation analysis using SMART-MSP and
               MS-HRM. BMC Cancer, 9: 453.                        https://doi.org/10.3389/fimmu.2018.00936
                                                               91.  Raitoharju E, Oksala N, Lehtimäki T, 2013, MicroRNAs in
               https://doi.org/10.1186/1471-2407-9-453
                                                                  the atherosclerotic plaque. Clin Chem, 59: 1708–1721.
            79.  He L, Hannon G, 2004, MicroRNAs: Small RNAs with a big
               role in gene regulation. Nat Rev Genet, 5: 522–531.      https://doi.org/10.1373/clinchem.2013.2049170
                                                               92.  de Yébenes VG, Briones AM, Martos-Folgado I, et al., 2020,
               https://doi.org/10.1038/nrg1379
                                                                  Aging-associated miR-217 aggravates atherosclerosis and
            80.  Akhtar MM, Micolucci L, Islam MS,  et al., 2016,   promotes cardiovascular dysfunction.  Arterioscler  Thromb
               Bioinformatic tools for microRNA dissection. Nucleic Acids   Vasc Biol, 40: 2408–2424.
               Res, 44: 24–44.
                                                                  https://doi.org/10.1161/ATVBAHA.120.314333
               https://doi.org/10.1093/nar/gkv1221
                                                               93.  Tao J, Xia L, Cai Z,  et al., 2021, Interaction Between
            81.  Treiber T, Treiber N, Meister G, 2019, Regulation of   microRNA and DNA methylation in atherosclerosis. DNA
               microRNA biogenesis and its crosstalk with other cellular   Cell Biol, 40: 101–115.
               pathways. Nat Rev Mol Cell Biol, 20: 5–20.
                                                                  https://doi.org/10.1089/dna.2020.6138
               https://doi.org/10.1038/s41580-018-0059-1. Erratum in:
               Nat Rev Mol Cell Biol, 2018, 19: 808. Erratum in: Nat Rev   94.  Yang X, Chen Y, Feng C,  et al., 2018, MicroRNA-216a
               Mol Cell Biol, 2019, 20: 321.                      induces endothelial senescence and inflammation via
                                                                  Smad3/IκBα pathway. J Cell Mol Med, 22: 2739–2749.
            82.  Bartel DP, 2018, Metazoan microRNAs. Cell, 173: 20–51.
                                                                  https://doi.org/10.1111/jcmm.13567
               https://doi.org/10.1016/j.cell.2018.03.006
                                                               95.  Chen J, Xu L, Hu Q, et al., 2015, MiR-17-5p as circulating
            83.  Laggerbauer B, Engelhardt S, 2022, MicroRNAs as   biomarkers for the severity of coronary atherosclerosis in
               therapeutic targets in cardiovascular disease. J Clin Invest,   coronary artery disease. Int J Cardiol, 197: 123–124.
               132: e159179.
                                                                  https://doi.org/10.1016/j.ijcard.2015.06.037
               https://doi.org/10.1172/JCI159179
                                                               96.  Li S, Lee C, Song J,  et al., 2017, Circulating microRNAs
            84.  Kozomara A, Birgaoanu M, Griffiths-Jones S, 2019,   as potential biomarkers for coronary plaque rupture.
               miRBase: From microRNA sequences to function. Nucleic   Oncotarget, 8: 48145–48156.
               Acids Res, 47: D155–D162.
                                                                  https://doi.org/10.18632/oncotarget.18308
               https://doi.org/10.1093/nar/gky1141
                                                               97.  Mao Z, Wu F, Shan Y, 2018, Identification of key genes and
            85.  Kim K, Baek SC, Lee YY, et al., 2021, A quantitative map   miRNAs associated with carotid atherosclerosis based on
               of human primary microRNA processing sites.  Mol Cell,   mRNA-seq data. Medicine (Baltimore), 97: e9832.
               81: 3422–3439.e11.
                                                                  https://doi.org/10.1097/MD.0000000000009832
               https://doi.org/10.1016/j.molcel.2021.07.002
                                                               98.  Reddy S, Hu DQ, Zhao M, et al., 2017, miR-21 is associated
            86.  Fernández-Hernando C, Baldán A, 2013, MicroRNAs and   with fibrosis and right ventricular failure.  JCI Insight, 2:
               cardiovascular disease. Curr Genet Med Rep, 1: 30–38.   e91625.
               https://doi.org/10.1007/s40142-013-0008-4          https://doi.org/10.1172/jci.insight.91625
            87.  Bartel DP, 2004, MicroRNAs: Genomics, biogenesis,   99.  Petrovic N, Ergun S, 2018, miRNAs as potential treatment
               mechanism, and function. Cell, 116: 281–297.
                                                                  targets and treatment options in cancer.  Mol Diagn Ther,
               https://doi.org/10.1016/s0092-8674(04)00045-5      22: 157–168.


            Volume 2 Issue 4 (2023)                         18                       https://doi.org/10.36922/gtm.1868
   62   63   64   65   66   67   68   69   70   71   72