Page 68 - GTM-2-4
P. 68

Global Translational Medicine                                        Epigenetics on cardiovascular diseases



               https://doi.org/10.1007/s40291-017-0314-8       111. Dasgupta I, Chatterjee A, 2021, Recent advances in miRNA
                                                                  delivery systems. Methods Protoc, 4: 10.
            100. Neppl RL,  Wang  DZ, 2014, The myriad essential roles of
               microRNAs in cardiovascular homeostasis and disease.      https://doi.org/10.3390/mps4010010
               Genes Dis, 1: 18–39.
                                                               112. Hong T, Wei Y, Xue X, et al., 2020, A novel anti-coagulative
               https://doi.org/10.1016/j.gendis.2014.06.003       nanocomplex in delivering miRNA-1 inhibitor against
                                                                  microvascular  obstruction  of  myocardial  infarction.  Adv
            101. Wronska A, Kurkowska-Jastrzebska I, Santulli G, 2015,
               Application of microRNAs in diagnosis and treatment of   Healthc Mater, 9: e1901783.
               cardiovascular disease. Acta Physiol (Oxf), 213: 60–83.      https://doi.org/10.1002/adhm.201901783
               https://doi.org/10.1111/apha.12416              113. Bejerano T, Etzion S, Elyagon S, et al., 2018, Nanoparticle
                                                                  delivery of miRNA-21 mimic to cardiac macrophages
            102. Wronska A, 2023, The role of microRNA in the development,
               diagnosis, and treatment of cardiovascular disease: Recent   improves myocardial remodeling after myocardial
               developments. J Pharmacol Exp Ther, 384: 123–132.   infarction. Nano Lett, 18: 5885–5891.
                                                                  https://doi.org/10.1021/acs.nanolett.8b02578
               https://doi.org/10.1124/jpet.121.001152
                                                               114. Feng YH, Tsao CJ, 2016, Emerging role of microRNA-21 in
            103. Griesemer D, Xue JR, Reilly SK, et al., 2021, Genome-wide
               functional screen of 3’UTR variants uncovers causal variants   cancer. Biomed Rep, 5: 395–402.
               for human disease and evolution. Cell, 184: 5247–5260.e19.      https://doi.org/10.3892/br.2016.747
               https://doi.org/10.1016/j.cell.2021.08.025      115. Bielska A, Niemira M, Bauer W, et al., 2022, Serum miRNA
                                                                  profile in diabetic patients with ischemic heart disease as
            104. Maries L, Marian C, Sosdean R, et al., 2021, MicroRNAs-the
               heart of post-myocardial infarction remodeling. Diagnostics   a promising non-invasive biomarker.  Front Endocrinol
               (Basel), 11: 1675.                                 (Lausanne), 13: 888948.
                                                                  https://doi.org/10.3389/fendo.2022.888948
               https://doi.org/10.3390/diagnostics11091675
                                                               116. Kilikevicius A, Meister G, Corey DR, 2002, Reexamining
            105. de Gonzalo-Calvo D, Cenarro A, Civeira F,  et al., 2016,
               microRNA expression profile in human coronary smooth   assumptions about miRNA-guided gene silencing. Nucleic
               muscle cell-derived microparticles is a source of biomarkers.   Acids Res, 50: 617–634.
               Clin Investig Arterioscler, 28: 167–177.           https://doi.org/10.1093/nar/gkab1256
               https://doi.org/10.1016/j.arteri.2016.05.005    117. Quinn JJ, Chang HY, 2016, Unique features of long non-
                                                                  coding RNA biogenesis and function.  Nat Rev Genet,
            106. Vaskova E, Ikeda G, Tada Y, et al., 2020, Sacubitril/valsartan
               improves cardiac function and decreases myocardial fibrosis   17: 47–62.
               via downregulation of exosomal miR-181a in a rodent      https://doi.org/10.1038/nrg.2015.10
               chronic myocardial infarction model. J Am Heart Assoc, 9:   118. Wei JW, Huang K, Yang C, et al., 2017, Non-coding RNAs as
               e015640.
                                                                  regulators in epigenetics (Review). Oncol Rep, 37: 3–9.
               https://doi.org/10.1161/JAHA.119.015640
                                                                  https://doi.org/10.3892/or.2016.5236
            107. Li J, Cai SX, He Q, et al., 2018, Intravenous miR-144 reduces   119. Fasolo F, Jin H, Winski G, et al., 2021, Long noncoding RNA
               left  ventricular  remodeling  after  myocardial  infarction.   MIAT controls advanced atherosclerotic lesion formation
               Basic Res Cardiol, 113: 36.
                                                                  and plaque destabilization. Circulation, 144: 1567–1583.
               https://doi.org/10.1007/s00395-018-0694-x
                                                                  https://doi.org/10.1161/CIRCULATIONAHA.120.052023
            108. Gao F, Kataoka M, Liu N, et al., 2019, Therapeutic role of   120. Devaux Y, Zangrando J, Schroen B,  et  al., 2015, Long
               miR-19a/19b in cardiac regeneration and protection from   noncoding RNAs in cardiac development and ageing. Nat
               myocardial infarction. Nat Commun, 10: 1802.
                                                                  Rev Cardiol, 12: 415–425.
               https://doi.org/10.1038/s41467-019-09530-1
                                                                  https://doi.org/10.1038/nrcardio.2015.55
            109. Gabisonia K, Prosdocimo G, Aquaro GD,  et al., 2019,   121. Rezaee M, Masihipour N, Milasi YE,  et al., 2023, New
               MicroRNA therapy stimulates uncontrolled cardiac repair   insights into the long non-coding RNAs dependent
               after myocardial infarction in pigs. Nature, 569: 418–422.
                                                                  modulation of heart failure and cardiac hypertrophy: From
               https://doi.org/10.1038/s41586-019-1191-6          molecular function to diagnosis and treatment. Curr Med
                                                                  Chem, 31: 1404–1426.
            110.  Roberts TC, Langer R, Wood MJA, 2020, Advances in
               oligonucleotide drug delivery. Nat Rev Drug Discov, 19: 673–694.      https://doi.org/10.2174/0929867330666230306143351
               https://doi.org/10.1038/s41573-020-0075-7       122. Wang Z, Zhang M, Fu Y, 2023, Downregulated circulating


            Volume 2 Issue 4 (2023)                         19                       https://doi.org/10.36922/gtm.1868
   63   64   65   66   67   68   69   70   71   72   73