Page 18 - GTM-3-4
P. 18

Global Translational Medicine                                             Parkinson’s: From cause to cure



               Res. 2020;37(3):491-507.                           2024;112:3585-3601.e5.
               doi: 10.1007/s12640-019-00147-2                    doi: 10.1016/J.NEURON.2024.08.003
            9.   Mattson MP, Camandola S. NF-kappaB in neuronal   20.  Alqahtani T, Deore SL, Kide AA,  et al. Mitochondrial
               plasticity and neurodegenerative disorders.  J  Clin Invest.   dysfunction and oxidative stress in Alzheimer’s disease, and
               2001;107(3):247-254.                               Parkinson’s disease, Huntington’s disease and Amyotrophic
                                                                  Lateral Sclerosis  - An updated review.  Mitochondrion.
               doi: 10.1172/JCI11916
                                                                  2023;71:83-92.
            10.  Kim TW, Koo SY, Riessland M,  et al. TNF-NF-κB-p53
               axis restricts  in vivo survival of hPSC-derived dopamine      doi: 10.1016/J.MITO.2023.05.007
               neurons. Cell. 2024;187(14):3671-3689.e23.      21.  Dias V, Junn E, Mouradian MM. The role of oxidative stress
                                                                  in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461-491.
               doi: 10.1016/J.CELL.2024.05.030
                                                                  doi: 10.3233/JPD-130230
            11.  Kim HJ, Kim H, Lee JH, Hwangbo C. Toll-like receptor 4
               (TLR ): New insight immune and aging.  Immun Ageing.   22.  Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol.
                   4
               2023;20(1):67.                                     2003;53(Suppl 3):S26-S36; discussion S36-S38.
               doi: 10.1186/s12979-023-00383-3                    doi: 10.1002/ANA.10483
            12.  Quan W, Liu Y, Li J, et al. Investigating the TLR /TAK /IRF   7  23.  Wang  BY,  Ye  YY,  Qian  C,  et al.  Stress  increases  MHC-I
                                                      1
                                                 4
               axis in NLRP -mediated pyroptosis in Parkinson’s disease.   expression in dopaminergic neurons and induces
                         3
               Inflammation. 2024;47(1):404-420.                  autoimmune activation in Parkinson’s disease. Neural Regen
                                                                  Res. 2021;16(12):2521-2527.
               doi: 10.1007/S10753-023-01918-Y
                                                                  doi: 10.4103/1673-5374.313057
            13.  Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-
               STING pathway as a therapeutic target in inflammatory   24.  Keeney  MT,  Rocha  EM, Hoffman EK,  et al. LRRK2
               diseases. Nat Rev Immunol. 2021;21(9):548-569.     regulates production of reactive oxygen species in cell
                                                                  and animal models of Parkinson’s disease. Sci Transl Med.
               doi: 10.1038/S41577-021-00524-Z
                                                                  2024;16(767):17-20.
            14.  Sliter DA, Martinez J, Hao L,  et  al. Parkin and PINK   1
               mitigate STING-induced inflammation.  Nature. 2018;      doi: 10.1126/SCITRANSLMED.ADL3438
               561(7722):258-262.                              25.  Klemmensen MM, Borrowman SH, Pearce C, Pyles B,
                                                                  Chandra B. Mitochondrial dysfunction in neurodegenerative
               doi: 10.1038/S41586-018-0448-9
                                                                  disorders. Neurotherapeutics. 2024;21(1):e00292.
            15.  Zhao M, Wang B, Zhang C, et al. The DJ -Nrf -STING axis
                                                 2
                                             1
               mediates the neuroprotective effects of Withaferin A in      doi: 10.1016/j.neurot.2023.10.002
               Parkinson’s disease. Cell Death Differ. 2021;28(8):2517-2535.  26.  Li HY, Liu DS, Zhang YB, Rong H, Zhang XJ. The interaction
                                                                  between alpha-synuclein and mitochondrial dysfunction in
               doi: 10.1038/S41418-021-00767-2
                                                                  Parkinson’s disease. Biophys Chem. 2023;303:107122.
            16.  Jiang SY, Tian T, Yao H, et al. The cGAS-STING-YY  axis
                                                      1
               accelerates progression of neurodegeneration in a mouse      doi: 10.1016/J.BPC.2023.107122
               model of Parkinson’s disease via LCN -dependent astrocyte   27.  Geibl FF, Henrich MT, Xie Z, et al. α-Synuclein pathology
                                           2
               senescence. Cell Death Differ. 2023;30(10):2280-2292.  disrupts mitochondrial function in dopaminergic and
                                                                  cholinergic neurons at-risk in Parkinson’s disease. bioRxiv
               doi: 10.1038/S41418-023-01216-Y
                                                                  [Preprint]. 2023.
            17.  Calabresi P, Di Lazzaro G, Marino G, Campanelli F,
               Ghiglieri V. Advances in understanding the function of      doi: 10.1101/2023.12.11.571045
               alpha-synuclein: Implications for Parkinson’s disease. Brain.   28.  Nguyen M, Wong YC,  Ysselstein D, Severino A,
               2023;146(9):3587-3597.                             Krainc D. Synaptic, mitochondrial, and lysosomal dysfunction
                                                                  in Parkinson’s disease. Trends Neurosci. 2019;42(2):140-149.
               doi: 10.1093/brain/awad150
                                                                  doi: 10.1016/J.TINS.2018.11.001
            18.  Endo H, Ono M, Takado Y,  et al. Imaging  α-synuclein
               pathologies in animal models and patients with Parkinson’s   29.  Borsche M, Pereira SL, Klein C, Grünewald A. Mitochondria
               and related diseases. Neuron. 2024;112(15):2540-2557.e8.  and Parkinson’s disease: Clinical, molecular, and translational
                                                                  aspects. J Parkinsons Dis. 2021;1(1):45-60.
               doi: 10.1016/J.NEURON.2024.05.006
                                                                  doi: 10.3233/JPD-201981
            19.  Xiang J, Tang J, Kang F, et al. Gut-induced alpha-Synuclein
               and Tau propagation initiate Parkinson’s and Alzheimer’s   30.  Jia F, Fellner A, Kumar KR. Monogenic Parkinson’s disease:
               disease co-pathology and behavior impairments.  Neuron.   Genotype, phenotype, pathophysiology, and genetic testing.


            Volume 3 Issue 4 (2024)                         10                              doi: 10.36922/gtm.5082
   13   14   15   16   17   18   19   20   21   22   23