Page 87 - GTM-4-1
P. 87
Global Translational Medicine Gelatin-based cell carriers for tooth-germ organoids
23. Martinez-Ibanez M, Murthy NS, Mao Y, et al. Enhancement doi: 10.1016/j.msec.2009.07.018
of plasma protein adsorption and osteogenesis of hMSCs 34. Amoyav B, Benny O. Microfluidic based fabrication and
by functionalized siloxane coatings for titanium implants. characterization of highly porous polymeric microspheres.
J Biomed Mater Res B Appl Biomater. 2018;106(3):1138-1147.
Polymers (Basel). 2019;11(3):419.
doi: 10.1002/jbm.b.33889
doi: 10.3390/polym11030419
24. Ma H, Peng Y, Zhang S, Zhang Y, Min P. Effects and 35. Awais S, Balouch SS, Riaz N, Choudhery MS. Human dental
progress of photo-crosslinking hydrogels in wound healing pulp stem cells exhibit osteogenic differentiation potential.
improvement. Gels. 2022;8(10):609.
Open Life Sci. 2020;15:229-236.
doi: 10.3390/gels8100609
doi: 10.1515/biol-2020-0023
25. Daly AC, Riley L, Segura T, Burdick JA. Hydrogel 36. Son YB, Kang YH, Lee HJ, et al. Evaluation of odonto/
microparticles for biomedical applications. Nat Rev Mater. osteogenic differentiation potential from different regions
2020;5(1):20-43.
derived dental tissue stem cells and effect of 17beta-estradiol
doi: 10.1038/s41578-019-0148-6 on efficiency. BMC Oral Health. 2021;21(1):15.
26. Contessi Negrini N, Lipreri MV, Tanzi MC, Fare S. In vitro doi: 10.1186/s12903-020-01366-2
cell delivery by gelatin microspheres prepared in water-in- 37. Noda S, Kawashima N, Yamamoto M, et al. Effect of cell
oil emulsion. J Mater Sci Mater Med. 2020;31(3):26.
culture density on dental pulp-derived mesenchymal
doi: 10.1007/s10856-020-6363-2 stem cells with reference to osteogenic differentiation. Sci
Rep. 2019;9(1):5430.
27. Tang XY, Wang ZM, Meng HC, et al. Robust W/O/W emulsion
stabilized by genipin-cross-linked sugar beet pectin-bovine doi: 10.1038/s41598-019-41741-w
serum albumin nanoparticles: Co-encapsulation of betanin 38. Spagnuolo G, De Luca I, Iaculli F, et al. Regeneration of
and curcumin. J Agric Food Chem. 2021;69(4):1318-1328.
dentin-pulp complex: Effect of calcium-based materials on
doi: 10.1021/acs.jafc.0c05212 hDPSCs differentiation and gene expression. Dent Mater.
2023;39(5):485-491.
28. Bonnier F, Keating ME, Wrobel TP, et al. Cell viability assessment
using the Alamar blue assay: A comparison of 2D and 3D cell doi: 10.1016/j.dental.2023.03.017
culture models. Toxicol In Vitro. 2015;29(1):124-131.
39. Werner M, Blanquer SB, Haimi SP, et al. Surface
doi: 10.1016/j.tiv.2014.09.014 curvature differentially regulates stem cell migration and
differentiation via altered attachment morphology and
29. Zhou H, Li X, Yin Y, et al. The proangiogenic effects of
extracellular vesicles secreted by dental pulp stem cells nuclear deformation. Adv Sci (Weinh). 2017;4(2):1600347.
derived from periodontally compromised teeth. Stem Cell doi: 10.1002/advs.201600347
Res Ther. 2020;11(1):110.
40. Xu JJ, Sun MY, Tan Y, et al. Effect of matrix stiffness on
doi: 10.1186/s13287-020-01614-w the proliferation and differentiation of umbilical cord
mesenchymal stem cells. Differentiation. 2017;96:30-39.
30. Schultz KM, Kyburz KA, Anseth KS. Measuring dynamic
cell-material interactions and remodeling during 3D human doi: 10.1016/j.diff.2017.07.001
mesenchymal stem cell migration in hydrogels. Proc Natl 41. Na J, Yang ZJ, Shi QS, et al. Extracellular matrix stiffness
Acad Sci U S A. 2015;112(29):E3757-E3764.
as an energy metabolism regulator drives osteogenic
doi: 10.1073/pnas.1511304112 differentiation in mesenchymal stem cells. Bioact Mater.
2024;35:549-563.
31. Xie W, Wei X, Kang H, et al. Static and dynamic:
Evolving biomaterial mechanical properties to control doi: 10.1016/j.bioactmat.2024.02.003
cellular mechanotransduction. Adv Sci (Weinh). 42. Sun MY, Chi GF, Li PD, et al. Effects of matrix stiffness on
2023;10(9):e2204594.
the morphology, adhesion, proliferation and osteogenic
doi: 10.1002/advs.202204594 differentiation of mesenchymal stem cells. Int J Med Sci.
2018;15(3):257-268.
32. Kim TK, Yoon JJ, Lee DS, Park TG. Gas foamed open porous
biodegradable polymeric microspheres. Biomaterials. doi: 10.7150/ijms.21620
2006;27(2):152-159.
43. Walejewska E, Melchels FPW, Paradiso A, et al. Tuning
doi: 10.1016/j.biomaterials.2005.05.081 physical properties of GelMA hydrogels through
microarchitecture for engineering osteoid tissue.
33. Wang YJ, Shi XT, Ren L, Wang CM, Wang DA. Porous poly
(lactic-co-glycolide) microsphere sintered scaffolds for tissue Biomacromolecules. 2023;25(1):188-199.
repair applications. Mat Sci Eng C. 2009;29(8):2502-2507. doi: 10.1021/acs.biomac.3c00909
Volume 4 Issue 1 (2025) 79 doi: 10.36922/gtm.5897

