Page 43 - GTM-4-3
P. 43

Global Translational Medicine                                      Electrical stimulation in therapy and biology



               doi: 10.1046/j.1365-201X.2003.01093.x           60.  Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, et al. A review
                                                                  on the consequences of molecular and genomic alterations
            51.  Janigro D, Perju C, Fazio V,  et al. Alternating current   following exposure to electromagnetic fields: Remodeling
               electrical stimulation enhanced chemotherapy: A  novel   of neuronal network and cognitive changes. Brain Res Bull.
               strategy to bypass multidrug resistance in tumor cells. BMC   2024;217:111090.
               Cancer. 2006;6:72.
                                                                  doi: 10.1016/j.brainresbull.2024.111090
               doi: 10.1186/1471-2407-6-72
                                                               61.  Nussbaum EL, Houghton P, Anthony J, et al. Neuromuscular
            52.  Zhong S, Yao S, Zhao Q,  et  al. Electricity-assisted   electrical stimulation for treatment of muscle impairment:
               cancer therapy: From traditional clinic applications to   Critical review and recommendations for clinical practice.
               emerging methods integrated with nanotechnologies. Adv   Physiother Can. 2017;69(5):1-76.
               NanoBiomed Res. 2023;3(3):2200143.
                                                                  doi: 10.3138/ptc.2015-88
               doi: 10.1002/anbr.202200143
                                                               62.  Krauss JK,  Lipsman N, Aziz  T,  et al. Technology of deep
            53.  Loh J, Gulati A. The use of transcutaneous electrical   brain stimulation: Current status and future directions. Nat
               nerve stimulation (TENS) in a major cancer center for   Rev Neurol. 2021;17(2):75-87.
               the treatment of severe cancer-related pain and associated
               disability. Pain Med. 2015;16(6):1204-1210.        doi: 10.1038/s41582-020-00426-z
                                                               63.  Villarruel Mendoza LA, Scilletta NA, Bellino MG,  et al.
               doi: 10.1111/pme.12038
                                                                  Recent advances in micro-electro-mechanical devices for
            54.  Academy of Bioelectric Meridian Massage Australia   controlled drug release applications. Front Bioeng Biotechnol.
               (ABMMA).  Lymphatic drainage and Bioelectric Meridian   2020;8:827.
               Therapy. Academy of Bioelectric Meridian Massage      doi: 10.3389/fbioe.2020.00827
               Australia; 2023. Available from: https://abmma.com.au/
               is-manual-lymphatic-drainage-mld-with-bioelectric-  64.  Carè M, Chiappalone M, Cota VR. Personalized strategies
               meridian-therapy-bmt-the-answer [Last accessed on   of neurostimulation: From static biomarkers to dynamic
               2025 Feb 08].                                      closed-loop assessment of neural function. Front Neurosci.
                                                                  2024;18:1363128.
            55.  Pluck A. Is manual lymphatic drainage with bio-electric
               massage therapy a good treatment combination for      doi: 10.3389/fnins.2024.1363128
               lymphoedema and lipoedema? A case study. J Lymphoedema.   65.  Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies
               2023;18(1):67.                                     for tissue-specific drug delivery. Cell. 2020;181(1):151-167.
            56.  Thrivikraman  G,  Boda  SK,  Basu  B.  Unraveling  the      doi: 10.1016/j.cell.2020.02.001
               mechanistic effects of electric field stimulation towards   66.  Ma R, Liang J, Huang W, et al. Electrical stimulation enhances
               directing stem cell fate and function: A tissue engineering   cardiac differentiation of human induced pluripotent stem
               perspective. Biomaterials. 2018;150:60-86.
                                                                  cells for myocardial infarction therapy.  Antioxid Redox
               doi: 10.1016/j.biomaterials.2017.10.003            Signal. 2018;28(5):371-384.
            57.  Ross CL, Siriwardane M, Almeida-Porada G, et al. The effect      doi: 10.1089/ars.2016.6766
               of low-frequency electromagnetic field on human bone   67.  Jung B, Yang C, Lee SH. Electroceutical and bioelectric
               marrow stem/progenitor cell differentiation. Stem Cell Res.   therapy: Its advantages and limitations. Clin Psychopharmacol
               2015;15(1):96-108.                                 Neurosci. 2023;21(1):19-31.
               doi: 10.1016/j.scr.2015.04.009                     doi: 10.9758/cpn.2023.21.1.19
            58.  Meng S, Rouabhia M, Zhang Z. Electrical stimulation and   68.  Chen RF, Lin YN, Liu KF, et al. The acceleration of diabetic
               cellular behaviors in electric field in biomedical research.   wound healing by low-intensity extracorporeal shockwave
               Materials (Basel). 2021;15(1):165.                 involves in the GSK-3β pathway. Biomedicines. 2020;9(1):21.
               doi: 10.3390/ma15010165                            doi: 10.3390/biomedicines9010021
            59.  Altyar AE, El-Sayed A, Abdeen A, et al. Future regenerative   69.  Wang C, Sani ES, Gao W. Wearable bioelectronics
               medicine developments and their therapeutic applications.   for chronic wound management.  Adv Funct Mater.
               Biomed Pharmacother. 2023;158:114131.              2022;32(17):2111022.
               doi: 10.1016/j.biopha.2022.114131                  doi: 10.1002/dfm.202111022







            Volume 4 Issue 3 (2025)                         35                              doi: 10.36922/gtm.7774
   38   39   40   41   42   43   44   45   46   47   48