Page 81 - IJAMD-1-2
P. 81

International Journal of AI for
            Materials and Design
                                                                               Machine learning for gel fraction prediction


               crosstalk‐free, fast‐responding, wide‐sensing‐range tactile      doi: 10.1007/s10845-023-02167-4
               fingertip sensor for smart gloves.  Adv Mater Interfaces.   45.  Shi J, Song J, Song B, Lu WF. Multi-objective optimization
               2022;9(21):2200621.
                                                                  design through machine learning for drop-on-demand
               doi: 10.1002/admi.202200621                        bioprinting. Engineering. 2019;5(3):586-593.
            38.  Liang F, Valdes JP, Cheng S, et al. Liquid-liquid dispersion      doi: 10.1016/j.eng.2018.12.009
               performance prediction and uncertainty quantification
               using recurrent neural networks.  Ind Eng Chem Res.   46.  Ning H, Zhou T, Joo SW. Machine learning boosts three-
               2024;63(17):7853-7875.                             dimensional bioprinting. Int J Bioprint. 2023;9(4):739.
               doi: 10.1021/acs.iecr.4c00014                      doi: 10.18063/ijb.739
            39.  Cheng S, Quilodrán-Casas C, Ouala S, et al. Machine learning   47.  Loessner D, Meinert C, Kaemmerer E, et al. Functionalization,
               with data assimilation and uncertainty quantification for   preparation and use of cell-laden gelatin methacryloyl-
               dynamical  systems:  A  review.  IEEE/CAA  J  Autom  Sin.   based hydrogels as modular tissue culture platforms.  Nat
               2023;10(6):1361-1387.                              Protoc. 2016;11(4):727-746.
               doi: 10.48550/arXiv.2303.10462                     doi: 10.1038/nprot.2016.037
            40.  Nathanael  K,  Cheng  S,  Kovalchuk  NM,  Arcucci  R,   48.  Ghosh RN, Thomas J, Vaidehi BR,  et al. An insight
               Simmons  MJ. Optimization of microfluidic synthesis of   into  synthesis,  properties and  applications  of  gelatin
               silver nanoparticles: A  generic approach using machine   methacryloyl hydrogel for 3D bioprinting.  Mater Adv.
               learning. Chem Eng Res Des. 2023;193:65-74.        2023;4(22):5496-5529.
               doi: 10.1016/j.cherd.2023.03.007                   doi: 10.1039/D3MA00715D
            41.  Xia Z, Ma K, Cheng S,  et al. Accurate identification and   49.  Hogan NJ, Urban AS, Ayala-Orozco C, Pimpinelli A,
               measurement  of  the  precipitate  area  by  two-stage  deep   Nordlander P, Halas NJ. Nanoparticles heat through light
               neural networks in novel chromium-based alloys.  Phys   localization. Nano Lett. 2014;14(8):4640-4645.
               Chem Chem Phys. 2023;25(23):15970-15987.           doi: 10.1021/nl5016975
               doi: 10.1039/D3CP00402C                         50.  Pedregosa F, Varoquaux G, Gramfort A,  et al. Scikit-
            42.  Wei J, Chu X, Sun XY, et al. Machine learning in materials   learn: Machine learning in Python.  J  Mach Learn Res.
               science. InfoMat. 2019;1(3):338-358.               2011;12:2825-2830.
               doi: 10.1002/inf2.12028                         51.  Smola AJ, Schölkopf B. A  tutorial on support vector
                                                                  regression. Stat Comput. 2004;14(3):199-222.
            43.  Ng WL, Goh GL, Goh GD, Ten JS, Yeong WY. Progress
               and opportunities for machine learning in materials      doi: 10.1023/B: STCO.0000035301.49549.88
               and  processes  of  additive  manufacturing.  Adv Mater.   52.  Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.
               2024;e2310006.
                                                                  doi: 10.1023/A:1010933404324
               doi: 10.1002/adma.202310006
                                                               53.  Singh AV, Bhardwaj P, Upadhyay AK,  et al. Navigating
            44.  Huang X, Ng WL, Yeong WY. Predicting the number
               of printed cells during inkjet-based bioprinting process   regulatory challenges in molecularly tailored nanomedicine.
               based on droplet velocity profile using machine learning   Explor Biomat X. 2024;1(2):124-134.
               approaches. J Intell Manuf. 2023;35:2349-2364.     doi: 10.37349/ebmx.2024.00009























            Volume 1 Issue 2 (2024)                         75                             doi: 10.36922/ijamd.3807
   76   77   78   79   80   81   82   83   84   85   86