Page 80 - IJAMD-1-2
P. 80
International Journal of AI for
Materials and Design
Machine learning for gel fraction prediction
doi: 10.1089/ten.TEA.2017.0150 of GelMA substrate on the outgrowth of PC12 cells. Biosci
Rep. 2019;39(1):BSR20181748.
16. Spencer AR, Shirzaei Sani E, Soucy JR, et al. Bioprinting of a
cell-laden conductive hydrogel composite. ACS Appl Mater doi: 10.1042/bsr20181748
Interfaces. 2019;11(34):30518-30533.
28. Pepelanova I, Kruppa K, Scheper T, Lavrentieva A. Gelatin-
doi: 10.1021/acsami.9b07353 methacryloyl (GelMA) hydrogels with defined degree of
17. Lee JJ, Ng HY, Lin YH, et al. The 3D printed conductive functionalization as a versatile toolkit for 3d cell culture and
grooved topography hydrogel combined with electrical extrusion bioprinting. Bioengineering (Basel). 2018;5(3):55.
stimulation for synergistically enhancing wound healing of doi: 10.3390/bioengineering5030055
dermal fibroblast cells. Biomater Adv. 2022;142:213132.
29. Lantoine J, Grevesse T, Villers A, et al. Matrix stiffness
doi: 10.1016/j.bioadv.2022.213132 modulates formation and activity of neuronal networks of
controlled architectures. Biomaterials. 2016;89:14-24.
18. Spencer AR, Primbetova A, Koppes AN, Koppes RA,
Fenniri H, Annabi N. Electroconductive gelatin doi: 10.1016/j.biomaterials.2016.02.041
methacryloyl-PEDOT: PSS composite hydrogels:
Design, synthesis, and properties. ACS Biomater Sci Eng. 30. Monteiro N, Thrivikraman G, Athirasala A, et al.
2018;4(5):1558-1567. Photopolymerization of cell-laden gelatin methacryloyl
hydrogels using a dental curing light for regenerative
doi: 10.1021/acsbiomaterials.8b00135 dentistry. Dent Mater. 2018;34(3):389-399.
19. Zhang S, Chen Y, Liu H, et al. Room‐temperature‐formed doi: 10.1016/j.dental.2017.11.020
PEDOT: PSS hydrogels enable injectable, soft, and healable th
organic bioelectronics. Adv Mater. 2020;32(1):1904752. 31. Annabi N, Tamayol A, Uquillas JA, et al. 25 anniversary
article: Rational design and applications of hydrogels in
doi: 10.1002/adma.201904752 regenerative medicine. Adv Mater. 2014;26(1):85-123.
20. Fu F, Wang J, Zeng H, Yu J. Functional conductive hydrogels doi: 10.1002/adma.201303233
for bioelectronics. ACS Mater Lett. 2020;2(10):1287-1301.
32. Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS.
doi: 10.1021/acsmaterialslett.0c00309 Photoinitiated polymerization of PEG-diacrylate with
21. Sagdic K, Fernández-Lavado E, Mariello M, Akouissi O, lithium phenyl-2,4,6-trimethylbenzoylphosphinate:
Lacour SP. Hydrogels and conductive hydrogels for Polymerization rate and cytocompatibility. Biomaterials.
implantable bioelectronics. Mrs Bull. 2023;48(5):495-505. 2009;30(35):6702-6707.
doi: 10.1557/s43577-023-00536-1 doi: 10.1016/j.biomaterials.2009.08.055
22. Zhang H, Guo J, Wang Y, Sun L, Zhao Y. Stretchable and 33. Goh GL, Huang X, Toh W, et al. Joint angle prediction for
conductive composite structural color hydrogel films as a cable-driven gripper with variable joint stiffness through
bionic electronic skins. Adv Sci (Weinh). 2021;8(20):2102156. numerical modeling and machine learning. Int J AI Mater
Des. 2024;1(1):2328.
doi: 10.1002/advs.202102156
doi: 10.36922/ijamd.2328
23. Linde E, Celina MC, Appelhans LN, Roach DJ, Cook AW.
In situ characterization of material extrusion printing by 34. Goh GL, Goh GD, Pan JW, Teng PS, Kong PW. Automated
near-infrared spectroscopy. Addit Manuf. 2023;63:103420. service height fault detection using computer vision
and machine learning for badminton matches. Sensors.
doi: 10.1016/j.addma.2023.103420 2023;23(24):9759.
24. Camposeo A, Arkadii A, Romano L, et al. Impact of size doi: 10.3390/s23249759
effects on photopolymerization and its optical monitoring
in-situ. Addit Manuf. 2022;58:103020. 35. Goh GD, Lee JM, Goh GL, Huang X, Lee S, Yeong WY.
Machine learning for bioelectronics on wearable and
doi: 10.1016/j.addma.2022.103020 implantable devices: Challenges and potential. Tissue Eng
25. Vallabh CK, Zhang Y, Zhao X. In-situ ultrasonic monitoring Part A. 2023;29(1-2):20-46.
for vat photopolymerization. Add Manuf. 2022;55:102801. doi: 10.1089/ten.TEA.2022.0119
doi: 10.1016/j.addma.2022.102801 36. Goh GL, Zhang H, Goh GD, Yeong WY, Chong TH. Multi-
26. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue objective optimization of intense pulsed light sintering
engineering: Progress and challenges. Glob Cardiol Sci Pract. process for aerosol jet printed thin film. Mater Sci Addit
2013;2013(3):316-342. Manuf. 2022;1(2):10.
doi: 10.5339/gcsp.2013.38 doi: 10.36922/msam.26
27. Wu Y, Xiang Y, Fang J, et al. The influence of the stiffness 37. Sinha AK, Goh GL, Yeong WY, Cai Y. Ultra‐low‐cost,
Volume 1 Issue 2 (2024) 74 doi: 10.36922/ijamd.3807

