Page 24 - IJAMD-2-1
P. 24
International Journal of AI for
Materials and Design
Predicting thermal conductivity of sintered Ag
Investigation: Jiahui Wei, Daowei Wu, Yuting Zhang, Kui doi: 10.1007/s11664-019-06984-3
Li, Fei Qin 7. Qin F, Hu Y, Dai Y, An T, Chen P. Evaluation of thermal
Methodology: Yanwei Dai, Libo Zhao, Jiahui Wei conductivity for sintered silver considering aging effect
Writing – original draft: Libo Zhao, Jiahui Wei, Yanwei Dai with microstructure based model. Microelectron Reliab.
Writing – review & editing: Libo Zhao, Yanwei Dai, Jiahui 2020;108:113633.
Wei doi: 10.1016/j.microrel.2020.113633
Ethics approval and consent to participate 8. Qin F, Hu Y, Dai Y, et al. Crack effect on the equivalent
thermal conductivity of porously sintered silver. J Electron
Not applicable. Mater. 2020;49:5994-6008.
Consent for publication doi: 10.1007/s11664-020-08325-1
9. Qin F., Zhao S, Dai Y, Hu Y, An T, Gong Y. Mud-cracking
Not applicable. effect of sintered silver layer on quantifying heat transfer
Availability of data behavior of SiC devices under power cycling: Voronoi
tessellation model. IEEE Trans Compon Packag Manuf
The data presented in this study are available upon request Technol. 2022;12(6):964-972.
from the corresponding author due to data protection. doi: 10.1109/TCPMT.2022.3178226
References 10. Kim YJ, Park BH, Hyun SK, Nishikawa H. The influence
of porosity and pore shape on the thermal conductivity of
1. Herboth T, Guenther M, Fix A, Wilde J. Failure Mechanisms silver sintered joint for die attach. Mater Today Commun.
of Sintered Silver Interconnections for Power Electronic 2021;29:102772.
Applications. In: IEEE 63 Electronic Components and doi: 10.1016/j.mtcomm.2021.102772
rd
Technology Conference. Las Vegas, NV, USA; 2013.
p. 1621-1627. 11. Chen H, Du Z, Li X, Zhou H, Liu Z. Identification of pipe
inner surface in heat conduction problems by deep learning
doi: 10.1109/ECTC.2013.6575789 and effective thermal conductivity transform. Eng Comput.
2. Ordonez-Miranda J, Hermens M, Nikitin I, Kouznetsova VG, 2020;37(9):3505-3523.
van der Sluis O, Ras MA, Volz S. Measurement and modeling doi: 10.1108/EC-01-2020-0012
of the effective thermal conductivity of sintered silver pastes.
Int J Therm Sci. 2016;108:185-194. 12. Huang Q, Hong D, Niu B, Long D, Zhang Y. An interpretable
deep learning strategy for effective thermal conductivity
doi: 10.1016/j.ijthermalsci.2016.05.014 prediction of porous materials. Int J Heat Mass Transfer.
3. Signor L, Kumar P, Tressou B, et al. Evolution of the 2024;221:125064.
thermal conductivity of Sintered silver joints with their doi: 10.1016/j.ijheatmasstransfer.2023.125064
porosity predicted by the finite element analysis of real 3D 13. Qin G, Wei Y, Yu L, et al. Predicting lattice thermal
microstructures. J Electron Mater. 2018;47:4170-4176.
conductivity from fundamental material properties
doi: 10.1007/s11664-018-6253-2. using machine learning techniques. J Mater Chem A.
2023;11(11):5801-5810.
4. Sghuri A, Billaud Y, Signor L, Saury D, Milhet X.
Experimental investigation of thermal conductivity doi: 10.1039/D2TA08721A
during aging of nanoporous sintered silver. Acta Mater. 14. Li RY, Lee E, Luo TF. A unified deep neural network potential
2023;257:119109. capable of predicting thermal conductivity of silicon in
doi: 10.1016/j.actamat.2023.119109 different phases. Mater Today Phys. 2020;12:100181.
5. Hu X, Martin HA, Poelma R, et al. Exploring the process- doi: 10.1016/j.mtphys.2020.100181
microstructure-thermal properties relationship of 15. Yang ZH, Wu XX, He XD, Guan XF. A multiscale
resin-reinforced Ag sintering material for high-power analysis-assisted two-stage reduced-order deep learning
applications via 3D FIB-SEM nanotomography. Mater Des. approach for effective thermal conductivity of arbitrary
2024;244:113185. contrast heterogeneous materials. Eng Appl Artif Intell.
doi: 10.1016/j.matdes.2024.113185 2024;136:108916.
6. Zhao Z, Zhang H, Zou G, et al. A predictive model for doi: 10.1016/j.engappai. 2024.108916
thermal conductivity of nano-Ag sintered interconnect for 16. Kim TH, Park JH, Jung KW, Kim J, Lee EH. Application
a SiC die. J Electron Mater. 2019;48:2811-2825. of convolutional neural network to predict anisotropic
Volume 2 Issue 1 (2025) 18 doi: 10.36922/ijamd.5744

