Page 25 - IJAMD-2-1
P. 25

International Journal of AI for
            Materials and Design
                                                                             Predicting thermal conductivity of sintered Ag


               effective thermal conductivity of semiconductor package.   using SVR-based machine learning algorithm.  J  Mech.
               IEEE Access. 2022;10:51995-52007.                  2023;39:183-190.
               doi: 10.1109/ACCESS.2022.3174882                   doi: 10.1093/jom/ufad016
            17.  Du CJ, Zou GS, Zhanwen A,  et al. Highly accurate and   27.  Samavatian V, Fotuhi-Firuzabad M, Samavatian M,
               efficient prediction of effective thermal conductivity of   Dehghanian P, Blaabjerg F. Correlation-driven machine
               sintered silver based on deep learning method. Int J Heat   learning  for accelerated  reliability assessment of  solder
               Mass Transfer. 2023;201:123654.                    joints in electronics. Sci Rep. 2020;10(1):14821.
               doi: 10.1016/j.ijheatmasstransfer.2022.123654      doi: 10.1038/s41598-020-71926-7
            18.  Du CJ, Zou G, Feng B, et al. Predicting effective thermal   28.  Wei H, Zhao SS, Rong QY, Bao H. Predicting the effective
               conductivity  of  sintered  silver  by  microstructural-  thermal conductivities of composite materials and porous
               simulation-based machine learning.  J  Electron Mater.   media by machine learning methods.  Int J Heat Mass
               2023;52(4):2347-2358.                              Transfer. 2018;127:908-916.
               doi: 10.1007/s11664-022-10172-1                    doi: 10.1016/j.ijheatmasstransfer.2018.08.082
            19.  Long X, Mao MH, Su TX, Su YT, Tian MK. Machine   29.  Rong QY, Wei H, Huang XY, Bao H. Predicting the effective
               learning method to predict dynamic compressive response   thermal conductivity of  composites  from cross sections
               of concrete-like material at high strain rates, Def Technol.   images using deep learning methods. Compos Sci Technol.
               2023;23:100-111.                                   2019;184:107861.
               doi: 10.1016/j.dt.2022.02.003                      doi: 10.1016/j.compscitech.2019.107861
            20.  Mao  M,  Wang  W,  Lu  C,  Jia  F,  Long  X.  Machine  learning   30.  Fei W, Narsilio GA, Disfani MM. Predicting effective
               for board-level drop response of BGA packaging structure.   thermal conductivity in sands using an artificial neural
               Microelectron Reliab. 2022;134:114553.             network with multiscale microstructural parameters. Int J
                                                                  Heat Mass Transfer. 2021;170:120997.
               doi: 10.1016/j.microrel. 2022.114553
                                                                  doi: 10.1016/j.ijheatmasstransfer.2021.120997
            21.  Sezer A, Altan A. Detection of solder paste defects with
               an optimization‐based deep learning model using image   31.  Carslaw HS, Jaeger JC. Conduction of Heat in Solids. London:
               processing techniques.  Soldering Surf Mount Technol.   Clarendon Press; 1992.
               2021;33(5):291-298.
                                                                  doi: 10.1007/978-1-4939-2565-0_2
               doi: 10.1108/SSMT-04-2021-0013
                                                               32.  Märtens M, Izzo D, Krzic A, Krzic A, Cox D. Super-
            22.  Long X, Lu CH, Su YT, Dai YH. Machine learning framework   resolution of PROBA-V images using convolutional neural
               for predicting the low cycle fatigue life of lead-free solders.   networks. Astrodynamics. 2019;3:387-402.
               Eng Failure Anal. 2023;148:107228.
                                                                  doi: 10.1007/s42064-019-0059-8
               doi: 10.1016/j.engfailanal.2023.107228
                                                               33.  Manan A, Zhang P, Ahmad S, Ahmad J. Optimizing hybrid
            23.  Prisacaru A, Gromala P, Han B, Zhang GQ. Degradation   fibre-reinforced polymer bars design: A machine learning
               estimation  and  prediction  of  electronic  packages   approach. J Polym Mater. 2024;41(1):15-44.
               using data-driven approach.  IEEE Trans Ind Electron.
               2021;69(3):2996-3006.                              doi: 10.32604/jpm.2024.053859
                                                               34.  Suryawanshi A, Behera N. Application of machine learning
               doi: 10.1109/TIE.2021.3068681
                                                                  for prediction dental material wear.  J  Polym Mater.
            24.  Samavatian V, Fotuhi-Firuzabad M, Samavatian M,   2023;40(3-4):305-316.
               Dehghanian P, Blaabjerg F. Iterative machine learning-aided
               framework bridges between fatigue and creep damages in      doi: 10.32381/JPM.2023.40.3-4.11
               solder interconnections. IEEE Trans Compon Packag Manuf   35.  Krishnamoorthy  K,  Prabhu  N.  Tensile  failure
               Technol. 2021;12(2):349-358.                       characterization of glass/epoxy composites using acoustic
                                                                  emission RMS data. J Polym Mater. 2023;40(3-4):215-226.
               doi: 10.1109/TCPMT.2021.3136751
                                                                  doi: 10.32381/JPM.2023.40.3-4.7
            25.  Long X, Lu CH, Shen ZY, Su YT. Identification of mechanical
               properties of thin-film elastoplastic materials by machine   36.  Peng H, Bai X. Comparative evaluation of three machine
               learning. Acta Mech Sol Sin. 2023;36:13-21.        learning algorithms on improving orbit prediction accuracy.
                                                                  Astrodynamics. 2019;3(4):325-343.
               doi: 10.1007/s10338-022-00340-5
                                                                  doi: 10.1007/s42064-018-0055-4
            26.  Kuo HC, Chang CY, Yuan C, Chiang KN. Wafer-level
               packaging solder joint reliability lifecycle prediction   37.  Li WB, Song Y, Cheng L, Gong SP. Closed-loop deep neural


            Volume 2 Issue 1 (2025)                         19                             doi: 10.36922/ijamd.5744
   20   21   22   23   24   25   26   27   28   29   30