Page 25 - IJAMD-2-1
P. 25
International Journal of AI for
Materials and Design
Predicting thermal conductivity of sintered Ag
effective thermal conductivity of semiconductor package. using SVR-based machine learning algorithm. J Mech.
IEEE Access. 2022;10:51995-52007. 2023;39:183-190.
doi: 10.1109/ACCESS.2022.3174882 doi: 10.1093/jom/ufad016
17. Du CJ, Zou GS, Zhanwen A, et al. Highly accurate and 27. Samavatian V, Fotuhi-Firuzabad M, Samavatian M,
efficient prediction of effective thermal conductivity of Dehghanian P, Blaabjerg F. Correlation-driven machine
sintered silver based on deep learning method. Int J Heat learning for accelerated reliability assessment of solder
Mass Transfer. 2023;201:123654. joints in electronics. Sci Rep. 2020;10(1):14821.
doi: 10.1016/j.ijheatmasstransfer.2022.123654 doi: 10.1038/s41598-020-71926-7
18. Du CJ, Zou G, Feng B, et al. Predicting effective thermal 28. Wei H, Zhao SS, Rong QY, Bao H. Predicting the effective
conductivity of sintered silver by microstructural- thermal conductivities of composite materials and porous
simulation-based machine learning. J Electron Mater. media by machine learning methods. Int J Heat Mass
2023;52(4):2347-2358. Transfer. 2018;127:908-916.
doi: 10.1007/s11664-022-10172-1 doi: 10.1016/j.ijheatmasstransfer.2018.08.082
19. Long X, Mao MH, Su TX, Su YT, Tian MK. Machine 29. Rong QY, Wei H, Huang XY, Bao H. Predicting the effective
learning method to predict dynamic compressive response thermal conductivity of composites from cross sections
of concrete-like material at high strain rates, Def Technol. images using deep learning methods. Compos Sci Technol.
2023;23:100-111. 2019;184:107861.
doi: 10.1016/j.dt.2022.02.003 doi: 10.1016/j.compscitech.2019.107861
20. Mao M, Wang W, Lu C, Jia F, Long X. Machine learning 30. Fei W, Narsilio GA, Disfani MM. Predicting effective
for board-level drop response of BGA packaging structure. thermal conductivity in sands using an artificial neural
Microelectron Reliab. 2022;134:114553. network with multiscale microstructural parameters. Int J
Heat Mass Transfer. 2021;170:120997.
doi: 10.1016/j.microrel. 2022.114553
doi: 10.1016/j.ijheatmasstransfer.2021.120997
21. Sezer A, Altan A. Detection of solder paste defects with
an optimization‐based deep learning model using image 31. Carslaw HS, Jaeger JC. Conduction of Heat in Solids. London:
processing techniques. Soldering Surf Mount Technol. Clarendon Press; 1992.
2021;33(5):291-298.
doi: 10.1007/978-1-4939-2565-0_2
doi: 10.1108/SSMT-04-2021-0013
32. Märtens M, Izzo D, Krzic A, Krzic A, Cox D. Super-
22. Long X, Lu CH, Su YT, Dai YH. Machine learning framework resolution of PROBA-V images using convolutional neural
for predicting the low cycle fatigue life of lead-free solders. networks. Astrodynamics. 2019;3:387-402.
Eng Failure Anal. 2023;148:107228.
doi: 10.1007/s42064-019-0059-8
doi: 10.1016/j.engfailanal.2023.107228
33. Manan A, Zhang P, Ahmad S, Ahmad J. Optimizing hybrid
23. Prisacaru A, Gromala P, Han B, Zhang GQ. Degradation fibre-reinforced polymer bars design: A machine learning
estimation and prediction of electronic packages approach. J Polym Mater. 2024;41(1):15-44.
using data-driven approach. IEEE Trans Ind Electron.
2021;69(3):2996-3006. doi: 10.32604/jpm.2024.053859
34. Suryawanshi A, Behera N. Application of machine learning
doi: 10.1109/TIE.2021.3068681
for prediction dental material wear. J Polym Mater.
24. Samavatian V, Fotuhi-Firuzabad M, Samavatian M, 2023;40(3-4):305-316.
Dehghanian P, Blaabjerg F. Iterative machine learning-aided
framework bridges between fatigue and creep damages in doi: 10.32381/JPM.2023.40.3-4.11
solder interconnections. IEEE Trans Compon Packag Manuf 35. Krishnamoorthy K, Prabhu N. Tensile failure
Technol. 2021;12(2):349-358. characterization of glass/epoxy composites using acoustic
emission RMS data. J Polym Mater. 2023;40(3-4):215-226.
doi: 10.1109/TCPMT.2021.3136751
doi: 10.32381/JPM.2023.40.3-4.7
25. Long X, Lu CH, Shen ZY, Su YT. Identification of mechanical
properties of thin-film elastoplastic materials by machine 36. Peng H, Bai X. Comparative evaluation of three machine
learning. Acta Mech Sol Sin. 2023;36:13-21. learning algorithms on improving orbit prediction accuracy.
Astrodynamics. 2019;3(4):325-343.
doi: 10.1007/s10338-022-00340-5
doi: 10.1007/s42064-018-0055-4
26. Kuo HC, Chang CY, Yuan C, Chiang KN. Wafer-level
packaging solder joint reliability lifecycle prediction 37. Li WB, Song Y, Cheng L, Gong SP. Closed-loop deep neural
Volume 2 Issue 1 (2025) 19 doi: 10.36922/ijamd.5744

