Page 43 - IJAMD-2-1
P. 43
International Journal of AI for
Materials and Design
ML molecular modeling of Ru: A KAN approach
Phys Lett. 2022;39(6):063701. Umeton R, editors. Machine Learning, Optimization, and
Big Data. Cham: Springer International Publishing; 2018.
doi: 10.1088/0256-307x/39/6/063701
p. 121-132.
31. Giannozzi P, Andreussi O, Brumme T, et al. Advanced
capabilities for materials modelling with quantum 42. Kingma DP, Jimmy B. Adam: A Method for Stochastic
rd
ESPRESSO. J Phys Condens Matter. 2017;29(46):465901. Optimization. In: 3 International Conference for Learning
Representationsy, CoRR; 2015
doi: 10.1088/1361-648X/aa8f79
43. Cortes C, Mohri M, Rostamizadeh A. L2 Regularization for
32. Giannozzi P, Baroni S, Bonini N, et al. QUANTUM Learning Kernels. In: Twenty-Fifth Twenty-Fifth Conference
ESPRESSO: A modular and open-source software project on Uncertainty in Artificial Intelligence; 2004. p. 109-16.
for quantum simulations of materials. J Phys Condens
Matter. 2009;21(39):395502. 44. Paszke A, Gross S, Massa F, et al. Pytorch: An imperative
style, high-performance deep learning library. Adv Neural
doi: 10.1088/0953-8984/21/39/395502 Inf Process Syst. 2019;32: 8024-8035.
33. Perdew JP, Burke K, Ernzerhof M. Generalized 45. Agarap AF. Deep Learning Using Rectified Linear Units
gradient approximation made simple. Phys Rev Lett. (Relu). [Preprint]; 2018.
1996;77(18):3865-3868.
46. Smith JS, Isayev O, Roitberg AE. ANI-1: An extensible
doi: 10.1103/PhysRevLett.77.3865 neural network potential with DFT accuracy at force field
34. Blöchl PE. Projector augmented-wave method. Phys Rev B. computational cost. Chem Sci. 2017;8(4):3192-3203.
1994;50(24):17953-17979. doi: 10.1039/C6SC05720A
doi: 10.1103/PhysRevB.50.17953 47. Najm HN, Yang Y. AEVmod-Atomic Environment Vector
35. Ong SP, Richards WD, Jain A, et al. Python materials Module Documentation; United States. California: Sandia
genomics (Pymatgen): A robust, open-source python library National Laboratories; 2021.
for materials analysis. Comput Mater Sci. 2013;68:314-319. doi: 10.2172/1817835.
doi: 10.1016/j.commatsci.2012.10.028 48. Zhang G, Haopeng, L. Effectiveness of Scaled Exponentially-
36. Chen X, Wang LF, Gao XY, et al. Machine learning enhanced Regularized Linear Units (SERLUs) [Preprint]; 2018.
empirical potentials for metals and alloys. Comput Phys 49. Schütt KT, Sauced HE, Kindermans PJ, Tkatchenko A,
Commun. 2021;269:108132. Müller KR. SchNet-a deep learning architecture for
doi: 10.1016/j.cpc.2021.108132 molecules and materials. J Chem Phys. 2018;148(24):241722.
37. Thompson AP, Aktulga HM, Berger R, et al. LAMMPS-a doi: 10.1063/1.5019779
flexible simulation tool for particle-based materials 50. Elfwing S, Uchibe E, Doya K. Sigmoid-weighted linear units
modeling at the atomic, meso, and continuum scales. for neural network function approximation in reinforcement
Comput Phys Commun. 2022;271:108171.
learning. Neural Netw. 2018;107:3-11.
doi: 10.1016/j.cpc.2021.108171
doi: 10.1016/j.neunet.2017.12.012
38. Villars P, Cenzual K. Ru Hcp (Ru) Crystal Structure: 51. Fast L, Wills JM, Johansson B, Eriksson O. Elastic constants
Datasheet from “PAULING FILE Multinaries Edition. of hexagonal transition metals: Theory. Phys Rev B.
Springer Materials; 2022. Available from: https://materials. 1995;51(24):17431-17438.
springer.com/isp/crystallographic/docs/sd_1244358 [Last
accessed on 2025 Jan 26]. doi: 10.1103/PhysRevB.51.17431
39. De Jong M, Chen W, Angsten T, et al. Charting the complete 52. Fortini A, Mendelev MI, Buldyrev S, Srolovitz D. Asperity
elastic properties of inorganic crystalline compounds. Sci contacts at the nanoscale: Comparison of Ru and Au. J Appl
Data. 2015;2(1):150009. Phys. 2008;104(7):074320.
doi: 10.1038/sdata.2015.9 doi: 10.1063/1.2991301
40. Himanen L, Jäger MOJ, Morooka EV, et al. DScribe: Library 53. Honeycutt JD, Andersen HC. Molecular dynamics study of
of descriptors for machine learning in materials science. melting and freezing of small lennard-jones clusters. J Phys
Comput Phys Commun. 2020;247:106949. Chem. 1987;91(19):4950-4963.
doi: 10.1016/j.cpc.2019.106949 doi: 10.1021/j100303a014
41. D’Agostino D, Serani A, Campana EF, Diez M. Nonlinear 54. Abbaspour M, Jorabchi MN, Akbarzadeh H, Ebrahimnejad A.
methods for design-space dimensionality reduction in Investigation of the thermal properties of phase change
shape optimization. In: Nicosia G, Pardalos P, Giuffrida G, materials encapsulated in capped carbon nanotubes
Volume 2 Issue 1 (2025) 37 doi: 10.36922/ijamd.8291

