Page 43 - IJAMD-2-1
P. 43

International Journal of AI for
            Materials and Design
                                                                            ML molecular modeling of Ru: A KAN approach


               Phys Lett. 2022;39(6):063701.                      Umeton  R,  editors.  Machine Learning, Optimization, and
                                                                  Big Data. Cham: Springer International Publishing; 2018.
               doi: 10.1088/0256-307x/39/6/063701
                                                                  p. 121-132.
            31.  Giannozzi  P,  Andreussi  O,  Brumme  T,  et al.  Advanced
               capabilities for materials modelling with quantum   42.  Kingma  DP,  Jimmy B.  Adam:  A  Method  for  Stochastic
                                                                                 rd
               ESPRESSO. J Phys Condens Matter. 2017;29(46):465901.  Optimization. In: 3  International Conference for Learning
                                                                  Representationsy, CoRR; 2015
               doi: 10.1088/1361-648X/aa8f79
                                                               43.  Cortes C, Mohri M, Rostamizadeh A. L2 Regularization for
            32.  Giannozzi P, Baroni S, Bonini N,  et al. QUANTUM   Learning Kernels. In: Twenty-Fifth Twenty-Fifth Conference
               ESPRESSO:  A  modular  and open-source  software  project   on Uncertainty in Artificial Intelligence; 2004. p. 109-16.
               for quantum simulations of materials.  J  Phys Condens
               Matter. 2009;21(39):395502.                     44.  Paszke A, Gross S, Massa F, et al. Pytorch: An imperative
                                                                  style, high-performance deep learning library. Adv Neural
               doi: 10.1088/0953-8984/21/39/395502                Inf Process Syst. 2019;32: 8024-8035.
            33.  Perdew JP, Burke K, Ernzerhof M. Generalized   45.  Agarap AF.  Deep  Learning Using  Rectified Linear  Units
               gradient approximation made simple.  Phys Rev Lett.   (Relu). [Preprint]; 2018.
               1996;77(18):3865-3868.
                                                               46.  Smith JS, Isayev O, Roitberg AE. ANI-1: An extensible
               doi: 10.1103/PhysRevLett.77.3865                   neural network potential with DFT accuracy at force field
            34.  Blöchl PE. Projector augmented-wave method. Phys Rev B.   computational cost. Chem Sci. 2017;8(4):3192-3203.
               1994;50(24):17953-17979.                           doi: 10.1039/C6SC05720A
               doi: 10.1103/PhysRevB.50.17953                  47.  Najm HN, Yang Y.  AEVmod-Atomic  Environment  Vector

            35.  Ong SP, Richards WD, Jain A,  et al. Python materials   Module Documentation;  United  States.  California:  Sandia
               genomics (Pymatgen): A robust, open-source python library   National Laboratories; 2021.
               for materials analysis. Comput Mater Sci. 2013;68:314-319.     doi: 10.2172/1817835.
               doi: 10.1016/j.commatsci.2012.10.028            48.  Zhang G, Haopeng, L. Effectiveness of Scaled Exponentially-
            36.  Chen X, Wang LF, Gao XY, et al. Machine learning enhanced   Regularized Linear Units (SERLUs) [Preprint]; 2018.
               empirical potentials for metals and alloys.  Comput Phys   49.  Schütt KT, Sauced HE, Kindermans PJ, Tkatchenko A,
               Commun. 2021;269:108132.                           Müller KR. SchNet-a deep learning architecture for
               doi: 10.1016/j.cpc.2021.108132                     molecules and materials. J Chem Phys. 2018;148(24):241722.
            37.  Thompson AP, Aktulga HM, Berger R,  et al. LAMMPS-a      doi: 10.1063/1.5019779
               flexible  simulation  tool  for  particle-based  materials   50.  Elfwing S, Uchibe E, Doya K. Sigmoid-weighted linear units
               modeling at the atomic, meso, and continuum scales.   for neural network function approximation in reinforcement
               Comput Phys Commun. 2022;271:108171.
                                                                  learning. Neural Netw. 2018;107:3-11.
               doi: 10.1016/j.cpc.2021.108171
                                                                  doi: 10.1016/j.neunet.2017.12.012
            38.  Villars P, Cenzual K.  Ru Hcp (Ru) Crystal Structure:   51.  Fast L, Wills JM, Johansson B, Eriksson O. Elastic constants
               Datasheet from “PAULING FILE Multinaries Edition.   of hexagonal transition metals: Theory.  Phys Rev B.
               Springer Materials; 2022. Available from: https://materials.  1995;51(24):17431-17438.
               springer.com/isp/crystallographic/docs/sd_1244358 [Last
               accessed on 2025 Jan 26].                          doi: 10.1103/PhysRevB.51.17431
            39.  De Jong M, Chen W, Angsten T, et al. Charting the complete   52.  Fortini A, Mendelev MI, Buldyrev S, Srolovitz D. Asperity
               elastic properties of inorganic crystalline compounds.  Sci   contacts at the nanoscale: Comparison of Ru and Au. J Appl
               Data. 2015;2(1):150009.                            Phys. 2008;104(7):074320.
               doi: 10.1038/sdata.2015.9                          doi: 10.1063/1.2991301
            40.  Himanen L, Jäger MOJ, Morooka EV, et al. DScribe: Library   53.  Honeycutt JD, Andersen HC. Molecular dynamics study of
               of descriptors for machine learning in materials science.   melting and freezing of small lennard-jones clusters. J Phys
               Comput Phys Commun. 2020;247:106949.               Chem. 1987;91(19):4950-4963.
               doi: 10.1016/j.cpc.2019.106949                     doi: 10.1021/j100303a014
            41.  D’Agostino D, Serani A, Campana EF, Diez M. Nonlinear   54.  Abbaspour M, Jorabchi MN, Akbarzadeh H, Ebrahimnejad A.
               methods for design-space dimensionality reduction in   Investigation of the thermal properties of phase change
               shape optimization. In: Nicosia G, Pardalos P, Giuffrida G,   materials encapsulated in capped carbon nanotubes



            Volume 2 Issue 1 (2025)                         37                             doi: 10.36922/ijamd.8291
   38   39   40   41   42   43   44   45   46   47   48