Page 42 - IJAMD-2-1
P. 42

International Journal of AI for
            Materials and Design
                                                                            ML molecular modeling of Ru: A KAN approach


               2023;254:119017.                                18.  Faber FA, Lindmaa A, Von Lilienfeld O.A, Armiento, R.
                                                                  Machine learning energies of 2 million elpasolite $(AB{C}_
               doi: 10.1016/j.actamat.2023.119017
                                                                  {2}{D}_{6})$ crystals. Phys Rev Lett. 2016;117(13):135502.
            7.   Miracle DB, Tsai MH, Senkov ON, Soni V, Banerjee R.
               Refractory high entropy superalloys (RSAs).  Scr Mater.      doi: 10.1103/PhysRevLett.117.135502
               2020;187:445-452.                               19.  Pilania G, Balachandran PV, Kim C, Lookman T. Finding
                                                                  new perovskite halides via machine learning. Front Mater.
               doi: 10.1016/j.scriptamat.2020.06.048
                                                                  2016;3:19.
            8.   Prins SN, Cornish LA, Stumpf WE, Sundman B.
               Thermodynamic  assessment of  the  alru  system.  Calphad.      doi: 10.3389/fmats.2016.00019
               2003;27(1):79-90.                               20.  Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H.
                                                                  Plasmonic  nanostructure  design  and  characterization  via
               doi: 10.1016/S0364-5916(03)00033-6
                                                                  deep learning. Light Sci Appl. 2018;7(1):60.
            9.   Haynes  WM,  editor.  CRC  Handbook  of  Chemistry  and
               Physics. 95  ed. Boca Raton, FL: CRC Press/Taylor and      doi: 10.1038/s41377-018-0060-7
                       th
               Francis; 2015.                                  21.  De Jong M, Chen W, Notestine R, et al. A statistical learning
                                                                  framework for materials science: Application to elastic
            10.  Hulm JK, Goodman BB. Superconducting properties
               of rhenium, ruthenium, and osmium.  Phys Rev.      moduli of k-nary inorganic polycrystalline compounds. Sci
               1957;106(4):659-671.                               Rep. 2016;6(1):34256.
                                                                  doi: 10.1038/srep34256
               doi: 10.1103/PhysRev.106.659
                                                               22.  Song K, Zhao R, Liu J,  et al. General-purpose machine-
            11.  Anzellini  S,  Errandonea  D,  Cazorla  C,  et al.  Thermal
               equation of state of ruthenium characterized by resistively   learned potential for 16 elemental metals and their alloys.
               heated diamond anvil cell. Sci Rep. 2019;9(1):14459.  Nat Commun. 2024;15(1):10208.
                                                                  doi: 10.1038/s41467-024-54554-x
               doi: 10.1038/s41598-019-51037-8
                                                               23.  Liyanage M, Turlo V, Curtin WA. Machine learning potential
            12.  Güler E, Uğur Ş, Güler M, Uğur G. Molecular dynamics
               exploration  of  the  temperature-dependent  elastic,  for the Cu-W system. Phys Rev Mater. 2024;8(11):113804.
               mechanical, and anisotropic properties of Hcp ruthenium.      doi: 10.1103/physrevmaterials.8.113804
               Eur Phys J Plus. 2024;139(5):372.
                                                               24.  Liu Y, Zhao T, Ju W, Shi S. Materials discovery and design
               doi: 10.1140/epjp/s13360-024-05177-0               using machine learning.  High Throughput Exp Model Res
                                                                  Adv Batter. 2017;3(3):159-177.
            13.  Zhi-Peng  LU,  Wen-Jun  Z,  Tie-Cheng  L,  Chuan-Min  M,
               Liang X, Xu-Hai L. Structural phase transition of      doi: 10.1016/j.jmat.2017.08.002
               ru  at  high  pressure  and  temperature.  Acta Phys Sin.   25.  Anstine DM, Isayev O. Machine learning interatomic
               2013;62(17):176402-176402.
                                                                  potentials and long-range physics.  J  Phys  Chem A.
               doi: 10.7498/aps.62.176402                         2023;127(11):2417-2431.
            14.  Jain A, Ong SP, Hautier G, et al. Commentary: The materials      doi: 10.1021/acs.jpca.2c06778
               project: A  materials genome approach to accelerating   26.  Kolmogorov A. On the representation of continuous
               materials innovation. APL Mater. 2013;1(1):011002.
                                                                  functions of several variables as superpositions of continuous
               doi: 10.1063/1.4812323                             functions of a smaller number of variables. Dokl Akad Nauk.
                                                                  1956;108(2):25-46.
            15.  Mobarak MH, Mimona MA, Islam MA,  et al. Scope of
               machine learning in materials research-a review. Appl Surf   27.  Liu Z, Wang Y, Vaidya S,  et al.  KAN: Kolmogorov-
               Sci Adv. 2023;18:100523.                           Arnold Networks; 2024. Available from: https://arxiv.org/
                                                                  abs/2404.19756 [Last accessed on 2025 Jan 26].
               doi: 10.1016/j.apsadv.2023.100523
                                                               28.  Anderson  PW.  Absence  of  diffusion  in  certain  random
            16.  Mannodi-Kanakkithodi A, Pilania G, Huan TD, Lookman T,
               Ramprasad R. Machine learning strategy for accelerated   lattices. Phys Rev. 1958;109(5):1492-1505.
               design of polymer dielectrics. Sci Rep. 2016;6:20952.     doi: 10.1103/PhysRev.109.1492
               doi: 10.1038/srep20952                          29.  Singer SJ, Nicolson GL. The fluid mosaic model of the structure
                                                                  of cell membranes. Science. 1972;175(4023):720-731.
            17.  Stanev V, Oses C, Kusne AG,  et al. Machine learning
               modeling of superconducting critical temperature.  NPJ      doi: 10.1126/science.175.4023.720
               Comput Mater. 2018;4(1):29.
                                                               30.  Li Y, Zhang JH, Mei F, Ma J, Xiao L, Jia S. Generalized
               doi: 10.1038/s41524-018-0085-8                     Aubry-André-Harper models in optical superlattices. Chin


            Volume 2 Issue 1 (2025)                         36                             doi: 10.36922/ijamd.8291
   37   38   39   40   41   42   43   44   45   46   47