Page 42 - IJAMD-2-1
P. 42
International Journal of AI for
Materials and Design
ML molecular modeling of Ru: A KAN approach
2023;254:119017. 18. Faber FA, Lindmaa A, Von Lilienfeld O.A, Armiento, R.
Machine learning energies of 2 million elpasolite $(AB{C}_
doi: 10.1016/j.actamat.2023.119017
{2}{D}_{6})$ crystals. Phys Rev Lett. 2016;117(13):135502.
7. Miracle DB, Tsai MH, Senkov ON, Soni V, Banerjee R.
Refractory high entropy superalloys (RSAs). Scr Mater. doi: 10.1103/PhysRevLett.117.135502
2020;187:445-452. 19. Pilania G, Balachandran PV, Kim C, Lookman T. Finding
new perovskite halides via machine learning. Front Mater.
doi: 10.1016/j.scriptamat.2020.06.048
2016;3:19.
8. Prins SN, Cornish LA, Stumpf WE, Sundman B.
Thermodynamic assessment of the alru system. Calphad. doi: 10.3389/fmats.2016.00019
2003;27(1):79-90. 20. Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H.
Plasmonic nanostructure design and characterization via
doi: 10.1016/S0364-5916(03)00033-6
deep learning. Light Sci Appl. 2018;7(1):60.
9. Haynes WM, editor. CRC Handbook of Chemistry and
Physics. 95 ed. Boca Raton, FL: CRC Press/Taylor and doi: 10.1038/s41377-018-0060-7
th
Francis; 2015. 21. De Jong M, Chen W, Notestine R, et al. A statistical learning
framework for materials science: Application to elastic
10. Hulm JK, Goodman BB. Superconducting properties
of rhenium, ruthenium, and osmium. Phys Rev. moduli of k-nary inorganic polycrystalline compounds. Sci
1957;106(4):659-671. Rep. 2016;6(1):34256.
doi: 10.1038/srep34256
doi: 10.1103/PhysRev.106.659
22. Song K, Zhao R, Liu J, et al. General-purpose machine-
11. Anzellini S, Errandonea D, Cazorla C, et al. Thermal
equation of state of ruthenium characterized by resistively learned potential for 16 elemental metals and their alloys.
heated diamond anvil cell. Sci Rep. 2019;9(1):14459. Nat Commun. 2024;15(1):10208.
doi: 10.1038/s41467-024-54554-x
doi: 10.1038/s41598-019-51037-8
23. Liyanage M, Turlo V, Curtin WA. Machine learning potential
12. Güler E, Uğur Ş, Güler M, Uğur G. Molecular dynamics
exploration of the temperature-dependent elastic, for the Cu-W system. Phys Rev Mater. 2024;8(11):113804.
mechanical, and anisotropic properties of Hcp ruthenium. doi: 10.1103/physrevmaterials.8.113804
Eur Phys J Plus. 2024;139(5):372.
24. Liu Y, Zhao T, Ju W, Shi S. Materials discovery and design
doi: 10.1140/epjp/s13360-024-05177-0 using machine learning. High Throughput Exp Model Res
Adv Batter. 2017;3(3):159-177.
13. Zhi-Peng LU, Wen-Jun Z, Tie-Cheng L, Chuan-Min M,
Liang X, Xu-Hai L. Structural phase transition of doi: 10.1016/j.jmat.2017.08.002
ru at high pressure and temperature. Acta Phys Sin. 25. Anstine DM, Isayev O. Machine learning interatomic
2013;62(17):176402-176402.
potentials and long-range physics. J Phys Chem A.
doi: 10.7498/aps.62.176402 2023;127(11):2417-2431.
14. Jain A, Ong SP, Hautier G, et al. Commentary: The materials doi: 10.1021/acs.jpca.2c06778
project: A materials genome approach to accelerating 26. Kolmogorov A. On the representation of continuous
materials innovation. APL Mater. 2013;1(1):011002.
functions of several variables as superpositions of continuous
doi: 10.1063/1.4812323 functions of a smaller number of variables. Dokl Akad Nauk.
1956;108(2):25-46.
15. Mobarak MH, Mimona MA, Islam MA, et al. Scope of
machine learning in materials research-a review. Appl Surf 27. Liu Z, Wang Y, Vaidya S, et al. KAN: Kolmogorov-
Sci Adv. 2023;18:100523. Arnold Networks; 2024. Available from: https://arxiv.org/
abs/2404.19756 [Last accessed on 2025 Jan 26].
doi: 10.1016/j.apsadv.2023.100523
28. Anderson PW. Absence of diffusion in certain random
16. Mannodi-Kanakkithodi A, Pilania G, Huan TD, Lookman T,
Ramprasad R. Machine learning strategy for accelerated lattices. Phys Rev. 1958;109(5):1492-1505.
design of polymer dielectrics. Sci Rep. 2016;6:20952. doi: 10.1103/PhysRev.109.1492
doi: 10.1038/srep20952 29. Singer SJ, Nicolson GL. The fluid mosaic model of the structure
of cell membranes. Science. 1972;175(4023):720-731.
17. Stanev V, Oses C, Kusne AG, et al. Machine learning
modeling of superconducting critical temperature. NPJ doi: 10.1126/science.175.4023.720
Comput Mater. 2018;4(1):29.
30. Li Y, Zhang JH, Mei F, Ma J, Xiao L, Jia S. Generalized
doi: 10.1038/s41524-018-0085-8 Aubry-André-Harper models in optical superlattices. Chin
Volume 2 Issue 1 (2025) 36 doi: 10.36922/ijamd.8291

