Page 57 - IJAMD-2-1
P. 57

International Journal of AI for
            Materials and Design
                                                                                     ML-based MPC for multizone BAC


               doi: 10.1016/j.scs.2019.101484                  29.  Joe J, Im P, Cui B, Dong J. Model-based predictive control
                                                                  of multi-zone commercial building with a lumped building
            19.  Zhou X, Xu L, Zhang J, et al. Data-driven thermal comfort
               model via support vector machine algorithms: Insights from   modelling approach. Energy. 2023;263:125494.
               ASHRAE RP-884 database. Energy Build. 2020;211:109795.     doi: 10.1016/j.energy.2022.125494
               doi: 10.1016/j.enbuild.2020.109795              30.  Oldewurtel F, Parisio A, Jones CN,  et al. Use of model
            20.  Chaudhuri T, Zhai D, Soh YC, Li H, Xie L. Random forest   predictive control and weather forecasts for energy efficient
               based thermal comfort prediction from gender-specific   building climate control. Energy Build. 2012;45:15-27.
               physiological parameters using wearable sensing technology.      doi: 10.1016/j.enbuild.2011.09.022
               Energy Build. 2018;166:391-406.
                                                               31.  Hou J, Li H, Nord N, Huang G. Model predictive control
               doi: 10.1016/j.enbuild.2018.02.035                 under weather forecast uncertainty for HVAC systems in
            21.  Koschwitz D, Frisch J, Van Treeck C. Data-driven heating   university buildings. Energy Build. 2022;257:111793.
               and cooling load predictions for non-residential buildings      doi: 10.1016/j.enbuild.2021.111793
               based on support vector machine regression and NARX
               Recurrent Neural Network: A comparative study on district   32.  Mazar MM, Rezaeizadeh A. Adaptive model predictive
               scale. Energy. 2018;165:134-142.                   climate control of multi-unit buildings using weather
                                                                  forecast data. J Build Eng. 2020;32:101449.
               doi: 10.1016/j.energy.2018.09.068
                                                                  doi: 10.1016/j.jobe.2020.101449
            22.  Zhang C, Li J, Zhao Y, Li T, Chen Q, Zhang X. A hybrid deep
               learning-based method for short-term building energy load   33.  ASHRAE  Handbook.  Heating, Ventilating, and Air-
               prediction combined with an interpretation process. Energy   Conditioning Systems and Equipment. Vol. 39. Atlanta, GA,
               Build. 2020;225:110301.                            USA: American Society of Heating, Refrigerating and Air-
                                                                  Conditioning Engineers, Inc.; 1996.
               doi: 10.1016/j.enbuild.2020.110301
                                                               34.  Meteorological Service Singapore (MSS). Climate of Singapore.
            23.  Beltran A and Cerpa AE. Optimal HVAC Building Control   Meteorological Service Singapore; 2020. Available from :
               with Occupancy Prediction. In: Proceedings of the 1  ACM   https://www.weather.gov.sg/climate-climate-of-singapore
                                                     st
               Conference on Embedded Systems for Energy-efficient   [Last accessed on 2024 Dec 05].
               Buildings; 2014. p. 168-171.
                                                               35.  Yang S, Wan MP, Ng BF,  et al. Model predictive control for
               doi: 10.1145/2674061.2674072                       integrated control of air-conditioning and mechanical ventilation,
            24.  Li B, Xia L. A Multi-grid Reinforcement Learning Method for   lighting and shading systems. Appl Energy. 2021;297:117112.
               Energy Conservation and Comfort of HVAC in Buildings.      doi: 10.1016/j.apenergy.2021.117112
               In:  2015  IEEE  International  Conference  on Automation
               Science and Engineering (CASE); 2015. p. 444-449.  36.  Freedman DA.  Statistical Models: Theory and Practice.
                                                                  United Kingdom: Cambridge University Press; 2009.
               doi: 10.1109/CoASE.2015.7294119
                                                               37.  Chifu VR, Pop CB, Chifu ES, Barleanu H. Deep Learning for
            25.  Zhang  Z  and  Lam  KP.  Practical  Implementation  and   Forecasting the Energy Consumption in Public Buildings.
               Evaluation of Deep Reinforcement Learning Control for a   In: 2021 20  RoEduNet Conference: Networking in Education
                                                                          th
               Radiant Heating System. In: Proceedings of the 5  Conference   and Research (RoEduNet); 2021. p. 1-6.
                                                 th
               on Systems for Built Environments; 2018. p. 148-157.
                                                                  doi: 10.48550/arXiv.2207.11953
               doi: 10.1145/3276774.3276775
                                                               38.  Yang R, Hao J, Jiang H, Jin X. Machine-Learning-Driven, 2020,
            26.  Ding X, Cerpa A, Du W. Exploring deep reinforcement   Site-Specific Weather Forecasting for Grid-Interactive Efficient
               learning for holistic smart building control. ACM Trans Sens   Buildings. Golden, CO, United States: National Renewable
               Netw. 2024;20(3):1-28.                             Energy Lab. (NREL); 2020. Available from: https://www.osti.
               doi: 10.1145/3656043                               gov/biblio/1669587 [Last accessed on 2025 Feb 06].
            27.  Shamachurn H, Seebaruth M, Kowlessur NS, Hassen SS.   39.  Yang S, Wan MP, Chen W, Ng BF, Dubey S. Model predictive
               Real‐time model predictive control of air‐conditioners   control with adaptive machine-learning-based model for
               through IoT-results from an experimental setup in a tropical   building energy efficiency and comfort optimization. Appl
               climate. Adv Control Appl Eng Ind Syst. 2024;6:e232.  Energy. 2020;271:115147.
               doi: 10.1002/adc2.232                              doi: 10.1016/j.apenergy.2020.115147
            28.  Hu G, You F. Multi-zone building control with thermal comfort   40.  Zhao S, Cajo R, De Keyser R, Liu S, Ionescu CM. Nonlinear
               constraints under disjunctive uncertainty using data-driven   predictive control applied to steam/water loop in large scale
               robust model predictive control. Adv Appl Energy. 2023;9:100124.  ships. IFAC PapersOnLine. 2019;52(1):868-873.
               doi: 10.1016/j.adapen.2023.100124                  doi: 10.1016/j.ifacol.2019.06.171

            Volume 2 Issue 1 (2025)                         51                             doi: 10.36922/ijamd.8161
   52   53   54   55   56   57   58   59   60   61   62