Page 56 - IJAMD-2-1
P. 56

International Journal of AI for
            Materials and Design
                                                                                     ML-based MPC for multizone BAC


            Consent for publication                               doi: 10.1016/j.jclepro.2018.12.320

            Not applicable.                                    8.   Mathews Roy A, Prasanna Venkatesan R, Shanmugapriya T.
                                                                  Simulation and analysis of a factory building’s energy
            Availability of data                                  consumption using eQuest software.  Chem Eng Technol.
                                                                  2021;44(5):928-933.
            The datasets presented in this article are not readily available      doi: 10.1002/ceat.202000489
            due to a confidentiality agreement with the funding agency.
                                                               9.   Andriamamonjy A, Saelens D, Klein R. An automated
            Further disclosure                                    IFC-based workflow for building energy performance
                                                                  simulation with Modelica. Autom Constr. 2018;91:166-181.
            Part of or the entire set of findings have been presented
            at 2024 Herrick Conferences in Compressor Engineering,      doi: 10.1016/j.autcon.2018.03.019
            Refrigeration and Air Conditioning and High-Performance   10.  Yang S, Wan MP, Ng BF, et al. A state-space thermal model
            Buildings (held on July 14, 2024, at Purdue University,   incorporating humidity and thermal comfort for model
            West Lafayette, Indiana, United States of America) hosted   predictive control in buildings. Energy Build. 2018;170:25-39.
            by the Ray W. Herrick Laboratories and the Center for      doi: 10.1016/j.enbuild.2018.03.082
            High-Performance Buildings in West Lafayette, Indiana,
            United States of America.                          11.  Yang S, Wan MP. Machine-learning-based model predictive
                                                                  control with instantaneous linearization-A case study on an
            References                                            air-conditioning and mechanical ventilation system.  Appl
                                                                  Energy. 2022;306:118041.
            1.   Building and Construction Authority (BCA).  Super      doi: 10.1016/j.apenergy.2021.118041
               Low Energy Building Technology Roadmap. Building and
               Construction Authority; 2018. Available from: https://  12.  Široký J, Oldewurtel F, Cigler J, Prívara, S. Experimental
               www1.bca.gov.sg/docs/default-source/docs-corp-buildsg/  analysis of model predictive control for an energy efficient
               sustainability/sle-tech-roadmap-report--published-ver1-1.  building heating system. Appl Energy. 2011;88:3079-3087.
               pdf?sfvrsn=f2df22ed_0 [Last accessed on 2024 Dec 05].     doi: 10.1016/j.apenergy.2011.03.009
            2.   Singapore Green Building Council (SGBC). Singapore Green   13.  Ma Y, Borrelli F, Hencey B, Coffey B, Bengea S, Haves P. Model
               Building Masterplan. Singapore Green Building Council;   predictive control for the operation of building cooling
               2020.  Available  from:  https://www.sgbc.sg/about-green-  systems. IEEE Trans Control Syst Technol. 2012;20:796-803.
               building/sgbmp [Last accessed on 2024 Dec 05].
                                                                  doi: 10.1109/TCST.2011.2124461
            3.   Building and  Construction  Authority (BCA).  Green Building
               Masterplan.  Building  and  Construction  Authority;  2021.   14.  Pang X,  Duarte  C, Haves P,  Chuang F.  Testing and
               Available from: https://www1.bca.gov.sg/docs/default-source/  demonstration  of  model  predictive  control  applied  to  a
               docs-corp-buildsg/sustainability/sgbmp-80-80-80-in-2030-  radiant slab cooling system in a building test facility. Energy
               infographic.pdf?sfvrsn=57172d48_2  [Last  accessed  on  Build. 2018;172:432-441.
               2024 Dec 05].                                      doi: 10.1016/j.enbuild.2018.05.013
            4.   Das HP, Lin YW, Agwan U, et al. Machine learning for smart   15.  Yang Y, Srinivasan S, Hu G, Spanos CJ. Distributed control
               and energy-efficient buildings. Environ Data Sci. 2024;3:e1.  of multizone HVAC systems considering indoor air quality.
               doi: 10.1017/eds.2023.43                           IEEE Trans Control Syst Technol. 2021;29:2586-2597.
            5.   Qiang G, Tang S, Hao J, Di Sarno L, Wu G, Ren S. Building      doi: 10.1109/TCST.2020.3047407
               automation systems for energy and comfort management   16.  Yang S, Chen W, Wan MP. A machine-learning-based event-
               in green buildings: A critical review and future directions.   triggered model predictive control for building energy
               Renew Sustain Energy Rev. 2023;179:113301.         management. Build Environ. 2023;233:110101.
               doi: 10.1016/j.rser.2023.113301                    doi: 10.1016/j.buildenv.2023.110101
            6.   Pinheiro S, Wimmer R, O’Donnell J,  et al. MVD based   17.  Fathi S, Srinivasan R, Fenner A, Fathi S. Machine learning
               information exchange between BIM and building energy   applications in urban building energy performance
               performance simulation. Autom Constr. 2018;90:91-103.  forecasting: A systematic review. Renew Sustain Energy Rev.
               doi: 10.1016/j.autcon.2018.02.009                  2020;133:110287.
            7.   Mauri L, Vallati A, Ocłoń P. Low impact energy saving      doi: 10.1016/j.rser.2020.110287
               strategies  for  individual  heating  systems  in  a  modern   18.  Seyedzadeh S, Rahimian FP, Rastogi P, Glesk I. Tuning
               residential building: A  case study in Rome.  J  Clean Prod.   machine learning models for prediction of building energy
               2019;214:791-802.                                  loads. Sustain Cities Soc. 2019;47:101484.


            Volume 2 Issue 1 (2025)                         50                             doi: 10.36922/ijamd.8161
   51   52   53   54   55   56   57   58   59   60   61