Page 28 - IJB-1-1
P. 28

The trend towards in vivo bioprinting

            Conflict of Interest and Funding                    10.  Cohen D L, Lipton J I, Bonassar L J, et al. 2010, Addi-
                                                                    tive manufacturing  for  in  situ  repair of  osteochondral
            No  conflict of interest  was  reported by the authors.   defects. Biofabrication, vol.2(3): 035004.
            This work was funded by the National Natural Science    http://dx.doi.org/10.1088/1758-5082/2/3/035004.
            Foundation of China (Grant Nos. 51422508, 51105298,   11.  Moreira Teixeira L  S,  Bijl S,  Pully V  V,  et al.  2012,
            and 51323007) and the Fundamental Research Funds        Self-attaching  and cell-attracting  in-situ  forming dex-
            for the Central University of China (Grant Nos.         tran-tyramine conjugates hydrogels for arthroscopic car-
            2014qngz09 and cxtd2013002).                            tilage repair. Biomaterials, vol.33(11): 3164–3174.
                                                                    http://dx.doi.org/10.1016/j.biomaterials.2012.01.001.
            Acknowledgement                                     12.  Biopen to rewrite orthopaedic implants  surgery  n.d.,
                                                                    viewed May 1, 2015,
            We  gratefully  acknowledge  the  assistance  of  Mr.   <http://media.uow.edu.au/news/UOW162803.html>
            Fangyuan Xu and Ms. Yuhang Zhang in figure plot-    13.  Liang Y, Liu W, Han B, et al. 2011, An in situ formed
            ting.                                                   biodegradable hydrogel for reconstruction of the corneal
                                                                    endothelium.  Colloids  and  Surfaces. B, Biointerfaces,
            References                                              vol.82(1): 1–7.
                                                                    http://dx.doi.org/10.1016/j.colsurfb.2010.07.043.
              1.   Sachs E  M, Haggerty  J S,  Cima M J,  et al.  1993,   14.  Xu T, Rodriguez-Devora J  I, Reyna-Soriano D,  et al.
                 Three-dimensional printing  techniques, US Patent   2014,  Bioprinting for constructing microvascular sys-
                 5204055 A.                                         tems for organs, in Rapid Prototyping of Biomaterials:
              2.   Boland T, Xu T, Damon B, et al. 2006, Application of   Principles and Applications,  Woodhead Publishing,
                 inkjet printing  to  tissue engineering.  Biotechnology   Cambridge, 201–220.
                 Journal, vol.1(9): 910–917.                    15.  Dababneh A B and Ozbolat I T, 2014, Bioprinting tech-
                 http://dx.doi.org/10.1002/biot.200600081.          nology:  a  current  state-of-the-art  review.  Journal of
              3.   Guillotin B, Souquet A, Catros S, et al. 2010, Laser as-  Manufacturing  Science and Engineering, vol.136(6):
                 sisted bioprinting of engineered tissue with  high cell   061016.
                 density and microscale organization. Biomaterials, vol.   http://dx.doi.org/10.1115/1.4028512.
                 31(28): 7250–7256.                             16.  Ozbolat I T and Yu Y, 2013, Bioprinting toward organ
                 http://dx.doi.org/10.1016/j.biomaterials.2010.05.055.   fabrication: challenges and future trends. IEEE Transac-
              4.   Khalil S, Nam J and Sun W, 2005, Multi-nozzle deposi-  tions on Bio-medical Engineering, vol.60(3): 691–699.
                 tion for construction of 3D biopolymer tissue scaffolds.   http://dx.doi.org/10.1109/tbme.2013.2243912.
                 Rapid Prototyping Journal, vol.11(1): 9–17.     17.  Schiele  N R, Chrisey D  B  and Corr D  T,  2011, Gela-
                 http://dx.doi.org/doi:10.1108/13552540510573347.   tin-based  laser direct-write technique for the  precise
              5.   Wang X, Yan Y and Zhang R, 2009, Recent trends and   spatial patterning of cells.  Tissue  Engineering. Part  C,
                 challenges in complex organ manufacturing. Tissue En-  Methods, vol.17(3): 289–298.
                 gineering Part B: Reviews, vol.16(2): 189–197.     http://dx.doi.org/10.1089/ten.TEC.2010.0442.
                 http://dx.doi.org/10.1089/ten.teb.2009.0576.   18.  Mezel C, Souquet A, Hallo L, et al. 2010, Bioprinting
              6.   Binder K W, 2011, In situ bioprinting of the skin, thesis,   by laser-induced forward transfer for tissue engineering
                 Wake Forest University, viewed WakeSpace database.   applications: jet formation modeling. Biofabrication, vol.
              7.   Binder K W, Zhao W, Aboushwareb T, et al. 2010, In   2(1): 014103.
                 situ  bioprinting of the  skin for burns.  Journal of the   http://dx.doi.org/10.1088/1758-5082/2/1/014103.
                 American College of Surgeons, vol.211(3): S76.     19.  Guillemot F,  Souquet A, Catros  S,  et al.  2010,
                 http://dx.doi.org/10.1016/j.jamcollsurg.2010.06.198.   High-throughput laser printing of cells and biomaterials
              8.   Sofokleous P, Stride E, Bonfield W, et al. 2013, Design,   for tissue engineering.  Acta Biomaterialia, vol.6(7):
                 construction and performance of a portable  handheld   2494–2500.
                 electrohydrodynamic multi-needle spray gun for bio-  http://dx.doi.org/10.1016/j.actbio.2009.09.029.
                 medical applications.  Materials  Science and  Engineer-  20.  Lu  Y, Mapili  G,  Suhali G,  et al.  2006, A digital mi-
                 ing: C, vol.33(1): 213–223.                        cro-mirror device-based system for the microfabrication
                 http://dx.doi.org/10.1016/j.msec.2012.08.033.      of complex, spatially patterned tissue engineering scaf-
              9.   Keriquel V, Guillemot F, Arnault I, et al. 2010, In vivo   folds. Journal of Biomedical Materials Research. Part A,
                 bioprinting for computer-  and robotic-assisted  medical   vol.77(2): 396–405.
                 intervention: preliminary study in mice. Biofabrication,   http://dx.doi.org/10.1002/jbm.a.30601.
                 vol.2(1): 014101.                              21.  Melchels F P W, Feijen J and Grijpma D W, 2010, A re-
                 http://dx.doi.org/10.1088/1758-5082/2/1/014101.    view on  stereolithography and  its applications  in  bio-

            24                          International Journal of Bioprinting (2015)–Volume 1, Issue 1
   23   24   25   26   27   28   29   30   31   32   33