Page 29 - IJB-1-1
P. 29
Manyi Wang, Jiankang He, Yaxiong Liu, et al.
medical engineering. Biomaterials, vol.31(24): 6121– term culture of genome-stable bipotent stem cells from
6130. adult human liver. Cell, vol.160(1–2): 299–312.
http://dx.doi.org/10.1016/j.biomaterials.2010.04.050. http://dx.doi.org/10.1016/j.cell.2014.11.050.
22. Bártolo P, 2011, Stereolithographic Processes, in Stereo- 34. Nichol J W, Koshy S T, Bae H, et al. 2010, Cell-laden
lithography, Springer US, New York, 1–36. microengineered gelatin methacrylate hydrogels. Bio-
http://dx.doi.org/10.1007/978-0-387-92904-0_1. materials, vol.31(21): 5536–5544.
23. Xu T, Gregory C A, Molnar P, et al. 2006, Viability and http://dx.doi.org/10.1016/j.biomaterials.2010.03.064.
electrophysiology of neural cell structures generated by 35. Fedorovich N E, Oudshoorn M H, van Geemen D, et al.
the inkjet printing method. Biomaterials, vol.27(19): 2009, The effect of photopolymerization on stem cells
3580–3588. embedded in hydrogels. Biomaterials, vol.30(3): 344–
http://dx.doi.org/10.1016/j.biomaterials.2006.01.048. 353.
24. Cui X and Boland T, 2009, Human microvasculature fa- http://dx.doi.org/10.1016/j.biomaterials.2008.09.037.
brication using thermal inkjet printing technology. Bio- 36. Rouillard A D, Berglund C M, Lee J Y, et al. 2011, Me-
materials, vol.30(31): 6221–6227. thods for photocrosslinking alginate hydrogel scaffolds
http://dx.doi.org/10.1016/j.biomaterials.2009.07.056. with high cell viability. Tissue Engineering. Part C,
25. Xu T, Baicu C, Aho M, et al. 2009, Fabrication and Methods, vol.17(2): 173–179.
characterization of bio-engineered cardiac pseudo tis- http://dx.doi.org/10.1089/ten.TEC.2009.0582.
sues. Biofabrication, vol.1(3): 035001. 37. Levett P A, Melchels F P W, Schrobback K, et al. 2014,
http://dx.doi.org/10.1088/1758-5082/1/3/035001. A biomimetic extracellular matrix for cartilage tissue
26. Billiet T, Vandenhaute M, Schelfhout J, et al. 2012, A engineering centered on photocurable gelatin, hyaluron-
review of trends and limitations in hydrogel-rapid pro- ic acid and chondroitin sulfate. Acta Biomaterialia, vol.
totyping for tissue engineering. Biomaterials, vol. 10(1): 214–223.
33(26): 6020–6041. http://dx.doi.org/10.1016/j.actbio.2013.10.005.
http://dx.doi.org/10.1016/j.biomaterials.2012.04.050. 38. Ramon-Azcon J, Ahadian S, Obregon R, et al. 2012,
27. Lee Y B, Polio S, Lee W, et al. 2010, Bio-printing of Gelatin methacrylate as a promising hydrogel for 3D
collagen and VEGF-releasing fibrin gel scaffolds for microscale organization and proliferation of dielectro-
neural stem cell culture. Experimental Neurology, vol. phoretically patterned cells. Lab on a Chip, vol.12(16):
223(2): 645–652. 2959–2969.
http://dx.doi.org/10.1016/j.expneurol.2010.02.014. http://dx.doi.org/10.1039/C2LC40213K.
28. Shim J-H, Lee J-S, Kim J Y, et al. 2012, Bioprinting of a 39. Nikkhah M, Eshak N, Zorlutuna P, et al. 2012, Directed
mechanically enhanced three-dimensional dual cell- la- endothelial cell morphogenesis in micropatterned gela-
den construct for osteochondral tissue engineering using tin methacrylate hydrogels. Biomaterials, vol.33(35):
a multi-head tissue/organ building system. Journal of 9009–9018.
Micromechanics and Microengineering, vol.22(8): http://dx.doi.org/10.1016/j.biomaterials.2012.08.068.
085014. 40. Chen Y-C, Lin R-Z, Qi H, et al. 2012, Functional human
http://dx.doi.org/10.1088/0960-1317/22/8/085014. vascular network generated in photocrosslinkable gela-
29. Pati F, Jang J, Ha D-H, et al. 2014, Printing three-dim- tin methacrylate hydrogels. Advanced Functional Mate-
ensional tissue analogues with decellularized extracel- rials, vol.22(10): 2027–2039.
lular matrix bioink. Nature Communications, vol.5. http://dx.doi.org/10.1002/adfm.201101662.
http://dx.doi.org/10.1038/ncomms4935. 41. Gauvin R, Chen Y C, Lee J W, et al. 2012, Microfabri-
30. Ozbolat I T, Chen H and Yu Y, 2014, Development of cation of complex porous tissue engineering scaffolds
‘Multi-arm Bioprinter’ for hybrid biofabrication of tis- using 3D projection stereolithography. Biomaterials, vol.
sue engineering constructs. Robotics and Comput- 33(15): 3824–3834.
er-Integrated Manufacturing, vol.30(3): 295–304. http://dx.doi.org/10.1016/j.biomaterials.2012.01.048.
http://dx.doi.org/10.1016/j.rcim.2013.10.005. 42. Zaborowska M, Sundberg J, Vest N, et al. 2010, Algi-
31. Melchels F P W, Domingos M A N, Klein T J, et al. nate bioprinting as a template for 3D bacterial cellulose
2012, Additive manufacturing of tissues and organs. scaffolds growth for bone healing applications. Ab-
Progress in Polymer Science, vol.37(8): 1079–1104. stracts of Papers of the American Chemical Society,
http://dx.doi.org/10.1016/j.progpolymsci.2011.11.007. vol.239.
32. Von Recum A F and Laberge M, 1995, Educational goals 43. Khalil S and Sun W, 2009, Bioprinting endothelial cells
for biomaterials science and engineering: Prospective with alginate for 3D tissue Constructs. Journal of Bio-
view. Journal of Applied Biomaterials, vol.6(2): 137–144. mechanical Engineering, vol.131(11): 111002.
http://dx.doi.org/10.1002/jab.770060209. http://dx.doi.org/10.1115/1.3128729.
33. Huch M, Gehart H, van Boxtel R, et al. 2015, Long- 44. Tan Y S E and Yeong W Y, 2014, Direct bioprinting of
International Journal of Bioprinting (2015)–Volume 1, Issue 1 25

