Page 29 - IJB-1-1
P. 29

Manyi Wang, Jiankang He,  Yaxiong Liu,  et al.

                 medical engineering.  Biomaterials, vol.31(24):  6121–   term culture of genome-stable bipotent stem cells from
                 6130.                                              adult human liver. Cell, vol.160(1–2): 299–312.
                 http://dx.doi.org/10.1016/j.biomaterials.2010.04.050.   http://dx.doi.org/10.1016/j.cell.2014.11.050.
              22.  Bártolo P, 2011, Stereolithographic Processes, in Stereo-  34.  Nichol J W, Koshy S T, Bae H, et al. 2010, Cell-laden
                 lithography, Springer US, New York, 1–36.          microengineered  gelatin methacrylate hydrogels.  Bio-
                 http://dx.doi.org/10.1007/978-0-387-92904-0_1.     materials, vol.31(21): 5536–5544.
              23.  Xu T, Gregory C A, Molnar P, et al. 2006, Viability and   http://dx.doi.org/10.1016/j.biomaterials.2010.03.064.
                 electrophysiology of neural cell structures generated by   35.  Fedorovich N E, Oudshoorn M H, van Geemen D, et al.
                 the inkjet printing  method.  Biomaterials, vol.27(19):   2009, The effect of photopolymerization  on stem cells
                 3580–3588.                                         embedded in hydrogels.  Biomaterials, vol.30(3): 344–
                 http://dx.doi.org/10.1016/j.biomaterials.2006.01.048.   353.
              24.  Cui X and Boland T, 2009, Human microvasculature fa-  http://dx.doi.org/10.1016/j.biomaterials.2008.09.037.
                 brication using thermal inkjet printing technology. Bio-  36.  Rouillard A D, Berglund C M, Lee J Y, et al. 2011, Me-
                 materials, vol.30(31): 6221–6227.                  thods for photocrosslinking alginate hydrogel scaffolds
                 http://dx.doi.org/10.1016/j.biomaterials.2009.07.056.   with  high  cell  viability.  Tissue  Engineering. Part  C,
              25.  Xu T, Baicu C,  Aho  M,  et al.  2009, Fabrication  and   Methods, vol.17(2): 173–179.
                 characterization  of bio-engineered cardiac pseudo tis-  http://dx.doi.org/10.1089/ten.TEC.2009.0582.
                 sues. Biofabrication, vol.1(3): 035001.        37.  Levett P A, Melchels F P W, Schrobback K, et al. 2014,
                 http://dx.doi.org/10.1088/1758-5082/1/3/035001.    A  biomimetic extracellular matrix  for cartilage tissue
              26.  Billiet T, Vandenhaute M, Schelfhout J, et al. 2012, A   engineering centered on photocurable gelatin, hyaluron-
                 review of trends and limitations in hydrogel-rapid pro-  ic acid and chondroitin sulfate. Acta Biomaterialia, vol.
                 totyping for tissue engineering.  Biomaterials, vol.   10(1): 214–223.
                 33(26): 6020–6041.                                 http://dx.doi.org/10.1016/j.actbio.2013.10.005.
                 http://dx.doi.org/10.1016/j.biomaterials.2012.04.050.   38.  Ramon-Azcon J, Ahadian S,  Obregon  R,  et al.  2012,
              27.  Lee Y B, Polio S,  Lee W,  et al.  2010, Bio-printing of   Gelatin  methacrylate as a promising  hydrogel  for 3D
                 collagen  and  VEGF-releasing fibrin  gel scaffolds for   microscale organization and proliferation  of dielectro-
                 neural stem cell  culture.  Experimental  Neurology, vol.   phoretically patterned cells. Lab on a Chip, vol.12(16):
                 223(2): 645–652.                                   2959–2969.
                 http://dx.doi.org/10.1016/j.expneurol.2010.02.014.   http://dx.doi.org/10.1039/C2LC40213K.
              28.  Shim J-H, Lee J-S, Kim J Y, et al. 2012, Bioprinting of a   39.  Nikkhah M, Eshak N, Zorlutuna P, et al. 2012, Directed
                 mechanically enhanced three-dimensional dual cell- la-  endothelial cell morphogenesis in micropatterned gela-
                 den construct for osteochondral tissue engineering using   tin  methacrylate hydrogels.  Biomaterials, vol.33(35):
                 a multi-head tissue/organ building  system.  Journal of   9009–9018.
                 Micromechanics and Microengineering, vol.22(8):    http://dx.doi.org/10.1016/j.biomaterials.2012.08.068.
                 085014.                                        40.  Chen Y-C, Lin R-Z, Qi H, et al. 2012, Functional human
                 http://dx.doi.org/10.1088/0960-1317/22/8/085014.   vascular network generated in photocrosslinkable gela-
              29.  Pati F, Jang J, Ha D-H, et al. 2014, Printing three-dim-  tin methacrylate hydrogels. Advanced Functional Mate-
                 ensional tissue analogues  with  decellularized extracel-  rials, vol.22(10): 2027–2039.
                 lular matrix bioink. Nature Communications, vol.5.     http://dx.doi.org/10.1002/adfm.201101662.
                 http://dx.doi.org/10.1038/ncomms4935.          41.  Gauvin R, Chen Y C, Lee J W, et al. 2012, Microfabri-
              30.  Ozbolat I T, Chen H and Yu Y, 2014, Development of   cation of complex porous tissue engineering scaffolds
                 ‘Multi-arm Bioprinter’  for hybrid biofabrication of tis-  using 3D projection stereolithography. Biomaterials, vol.
                 sue engineering  constructs.  Robotics  and  Comput-  33(15): 3824–3834.
                 er-Integrated Manufacturing, vol.30(3): 295–304.     http://dx.doi.org/10.1016/j.biomaterials.2012.01.048.
                 http://dx.doi.org/10.1016/j.rcim.2013.10.005.   42.  Zaborowska M, Sundberg J, Vest N, et al. 2010, Algi-
              31.  Melchels F P W,  Domingos M  A  N, Klein  T J,  et al.   nate bioprinting as a template for 3D bacterial cellulose
                 2012, Additive manufacturing of tissues and  organs.   scaffolds growth for bone  healing applications.  Ab-
                 Progress in Polymer Science, vol.37(8): 1079–1104.     stracts  of Papers  of  the American Chemical  Society,
                 http://dx.doi.org/10.1016/j.progpolymsci.2011.11.007.   vol.239.
              32.  Von Recum A F and Laberge M, 1995, Educational goals   43.  Khalil S and Sun W, 2009, Bioprinting endothelial cells
                 for biomaterials science and engineering: Prospective   with alginate for 3D tissue Constructs. Journal of Bio-
                 view. Journal of Applied Biomaterials, vol.6(2): 137–144.     mechanical Engineering, vol.131(11): 111002.
                 http://dx.doi.org/10.1002/jab.770060209.           http://dx.doi.org/10.1115/1.3128729.
              33.  Huch  M, Gehart  H,  van  Boxtel R,  et al.  2015, Long-   44.  Tan Y S E and Yeong W Y, 2014, Direct bioprinting of
                                        International Journal of Bioprinting (2015)–Volume 1, Issue 1      25
   24   25   26   27   28   29   30   31   32   33   34