Page 30 - IJB-1-1
P. 30

The trend towards in vivo bioprinting

                 alginate-based tubular constructs using multi-nozzle ex-  Biotechnology, vol.148(1): 46–55.
                 trusion-based  technique.  1st International Conference   http://dx.doi.org/10.1016/j.jbiotec.2010.03.002.
                 on Progress in Additive Manufacturing,         55.  Liu  X, Jin  X  and  Ma P X,  2011, Nanofibrous hollow
                 http://dx.doi.org/10.3850/978-981-09-0446-3_093.   microspheres self-assembled from star-shaped polymers
              45.  Jia J, Richards D J, Pollard S, et al. 2014, Engineering   as injectable cell carriers for knee repair. Nature Mate-
                 alginate as bioink for  bioprinting.  Acta Biomaterialia,   rials, vol.10(5): 398–406.
                 vol.10(10): 4323–4331.                             <http://dx.doi.org/http://www.nature.com/nmat/journal/v
                 http://dx.doi.org/10.1016/j.actbio.2014.06.034.    10/n5/abs/nmat2999.html#supplementary-information.>
              46.  Song S-J, Choi J, Park Y–D, et al. 2011, Sodium algi-  56.  Lu P J, Zaccarelli E, Ciulla F, et al. 2008, Gelation of
                 nate hydrogel-based bioprinting using a novel multinoz-  particles with short-range attraction.  Nature, vol.
                 zle  bioprinting  system.  Artificial Organs, vol.35(11):   453(7194): 499–503.
                 1132–1136.                                         <http://dx.doi.org/http://www.nature.com/nature/journal/
                 http://dx.doi.org/10.1111/j.1525-1594.2011.01377.x.   v453/n7194/suppinfo/nature06931_S1.html.>
              47.  Duan B, Hockaday L A, Kang K H, et al. 2013, 3D Bi-  57.  Rezende R A, Pereira F D A S, Kasyanov V, et al. 2013,
                 oprinting of heterogeneous aortic valve conduits  with   Scalable Biofabrication  of  Tissue  Spheroids for Organ
                 alginate/gelatin hydrogels. Journal of Biomedical Mate-  Printing. Procedia CIRP, vol.5(0): 276–281.
                 rials Research Part A, vol.101A(5): 1255–1264.     http://dx.doi.org/10.1016/j.procir.2013.01.054.
                 http://dx.doi.org/10.1002/jbm.a.34420.         58.  Ananthanarayanan A, Narmada B C, Mo X, et al. 2011,
              48.  Bidarra S J, Barrias C C, Fonseca K B, et al. 2011, In-  Purpose-driven biomaterials research in liver-tissue en-
                 jectable in  situ  crosslinkable RGD-modified  alginate   gineering. Trends in Biotechnology, vol.29(3): 110–118.
                 matrix for endothelial cells delivery. Biomaterials, vol.   http://dx.doi.org/10.1016/j.tibtech.2010.10.006.
                 32(31): 7897–7904.                             59.  Bragg K, Vanbalen N and Cook N, 2005, Future trends
                 http://dx.doi.org/10.1016/j.biomaterials.2011.07.013.   in  minimally  invasive  surgery.  AORN Journal, vol.
              49.  Yu J, Du K T, Fang Q, et al. 2010, The use of human   82(6): 1006–1014, 1016–1008; quiz 1019–1022.
                 mesenchymal stem cells encapsulated in RGD modified   http://dx.doi.org/10.1016/S0001-2092(06)60252-4.
                 alginate microspheres in the repair of myocardial infarc-  60.  Burg K J L and Boland T, 2003, Minimally invasive tis-
                 tion in the rat. Biomaterials, vol.31(27): 7012–7020.     sue engineering composites and cell printing. Engineer-
                 http://dx.doi.org/10.1016/j.biomaterials.2010.05.078.   ing in Medicine and Biology Magazine, IEEE, vol.22(5):
              50.  Park J Y, Choi J C, Shim J H, et al. 2014, A comparative   84–91.
                 study on collagen type I and hyaluronic acid dependent   http://dx.doi.org/10.1109/MEMB.2003.1256277.
                 cell behavior for osteochondral tissue bioprinting. Bio-  61.  Shetty A A, Kim S J, Bilagi P, et al. 2013, Autologous
                 fabrication, vol.6(3): 035004.                     collagen-induced  chondrogenesis: single-stage arthros-
                 http://dx.doi.org/10.1088/1758-5082/6/3/035004.    copic cartilage repair technique. Orthopedics, vol. 36(5):
              51.  Li  C, Faulkner-Jones A, Dun  A R,  et al.  2015, Rapid   e648–652.
                 formation of a  supramolecular  polypeptide–DNA  hy-  http://dx.doi.org/10.3928/01477447-20130426-30.
                 drogel for in situ three-dimensional multilayer bioprint-  62.  Cook D, Julias M and Nauman E, 2014, Biological va-
                 ing.  Angewandte Chemie  International Edition, vol.   riability  in  biomechanical engineering research: Signi-
                 54(13): 3957–3961.                                 ficance and meta-analysis of current modeling practices.
                 http://dx.doi.org/10.1002/anie.201411383.          Journal of Biomechanics, vol.47(6): 1241–1250.
              52.  Wüst S, Godla M E, Müller R, et al. 2014, Tunable hy-  http://dx.doi.org/10.1016/j.jbiomech.2014.01.040.
                 drogel composite with two-step processing in combina-  63.  Hong-Seok P and Chintal S, 2015, Development of high
                 tion with  innovative hardware upgrade  for  cell-based   speed  and  high  accuracy 3D  dental  intra  oral  scanner.
                 three-dimensional bioprinting.  Acta  Biomaterialia, vol.   Procedia Engineering, vol.100: 1174–1181.
                 10(2): 630–640.                                    http://dx.doi.org/10.1016/j.proeng.2015.01.481.
                 http://dx.doi.org/10.1016/j.actbio.2013.10.016.   64.  Nam S Y, Ricles L M, Suggs L J, et al. 2014, Imaging
              53.  Mironov V, Visconti R P, Kasyanov V, et al. 2009, Or-  strategies for tissue engineering applications. Tissue En-
                 gan printing: Tissue spheroids as building blocks. Bio-  gineering Part B: Reviews, vol.21(1): 88–102.
                 materials, vol.30(12): 2164–2174.                  http://dx.doi.org/10.1089/ten.teb.2014.0180.
                 http://dx.doi.org/10.1016/j.biomaterials.2008.12.084.   65.  Jin Z, 2014, Computational Modelling of Biomechanics
              54.  Kelm J M, Lorber V, Snedeker J G, et al. 2010, A novel   and Biotribology in the Musculoskeletal System, Wood-
                 concept  for  scaffold-free vessel tissue engineering:   head Publishing, Cambridge, xv–xix.
                 Self-assembly of microtissue building blocks. Journal of   http://dx.doi.org/10.1016/B978-0-85709-661-6.50020-6.



            26                          International Journal of Bioprinting (2015)–Volume 1, Issue 1
   25   26   27   28   29   30   31   32   33   34   35