Page 30 - IJB-1-1
P. 30
The trend towards in vivo bioprinting
alginate-based tubular constructs using multi-nozzle ex- Biotechnology, vol.148(1): 46–55.
trusion-based technique. 1st International Conference http://dx.doi.org/10.1016/j.jbiotec.2010.03.002.
on Progress in Additive Manufacturing, 55. Liu X, Jin X and Ma P X, 2011, Nanofibrous hollow
http://dx.doi.org/10.3850/978-981-09-0446-3_093. microspheres self-assembled from star-shaped polymers
45. Jia J, Richards D J, Pollard S, et al. 2014, Engineering as injectable cell carriers for knee repair. Nature Mate-
alginate as bioink for bioprinting. Acta Biomaterialia, rials, vol.10(5): 398–406.
vol.10(10): 4323–4331. <http://dx.doi.org/http://www.nature.com/nmat/journal/v
http://dx.doi.org/10.1016/j.actbio.2014.06.034. 10/n5/abs/nmat2999.html#supplementary-information.>
46. Song S-J, Choi J, Park Y–D, et al. 2011, Sodium algi- 56. Lu P J, Zaccarelli E, Ciulla F, et al. 2008, Gelation of
nate hydrogel-based bioprinting using a novel multinoz- particles with short-range attraction. Nature, vol.
zle bioprinting system. Artificial Organs, vol.35(11): 453(7194): 499–503.
1132–1136. <http://dx.doi.org/http://www.nature.com/nature/journal/
http://dx.doi.org/10.1111/j.1525-1594.2011.01377.x. v453/n7194/suppinfo/nature06931_S1.html.>
47. Duan B, Hockaday L A, Kang K H, et al. 2013, 3D Bi- 57. Rezende R A, Pereira F D A S, Kasyanov V, et al. 2013,
oprinting of heterogeneous aortic valve conduits with Scalable Biofabrication of Tissue Spheroids for Organ
alginate/gelatin hydrogels. Journal of Biomedical Mate- Printing. Procedia CIRP, vol.5(0): 276–281.
rials Research Part A, vol.101A(5): 1255–1264. http://dx.doi.org/10.1016/j.procir.2013.01.054.
http://dx.doi.org/10.1002/jbm.a.34420. 58. Ananthanarayanan A, Narmada B C, Mo X, et al. 2011,
48. Bidarra S J, Barrias C C, Fonseca K B, et al. 2011, In- Purpose-driven biomaterials research in liver-tissue en-
jectable in situ crosslinkable RGD-modified alginate gineering. Trends in Biotechnology, vol.29(3): 110–118.
matrix for endothelial cells delivery. Biomaterials, vol. http://dx.doi.org/10.1016/j.tibtech.2010.10.006.
32(31): 7897–7904. 59. Bragg K, Vanbalen N and Cook N, 2005, Future trends
http://dx.doi.org/10.1016/j.biomaterials.2011.07.013. in minimally invasive surgery. AORN Journal, vol.
49. Yu J, Du K T, Fang Q, et al. 2010, The use of human 82(6): 1006–1014, 1016–1008; quiz 1019–1022.
mesenchymal stem cells encapsulated in RGD modified http://dx.doi.org/10.1016/S0001-2092(06)60252-4.
alginate microspheres in the repair of myocardial infarc- 60. Burg K J L and Boland T, 2003, Minimally invasive tis-
tion in the rat. Biomaterials, vol.31(27): 7012–7020. sue engineering composites and cell printing. Engineer-
http://dx.doi.org/10.1016/j.biomaterials.2010.05.078. ing in Medicine and Biology Magazine, IEEE, vol.22(5):
50. Park J Y, Choi J C, Shim J H, et al. 2014, A comparative 84–91.
study on collagen type I and hyaluronic acid dependent http://dx.doi.org/10.1109/MEMB.2003.1256277.
cell behavior for osteochondral tissue bioprinting. Bio- 61. Shetty A A, Kim S J, Bilagi P, et al. 2013, Autologous
fabrication, vol.6(3): 035004. collagen-induced chondrogenesis: single-stage arthros-
http://dx.doi.org/10.1088/1758-5082/6/3/035004. copic cartilage repair technique. Orthopedics, vol. 36(5):
51. Li C, Faulkner-Jones A, Dun A R, et al. 2015, Rapid e648–652.
formation of a supramolecular polypeptide–DNA hy- http://dx.doi.org/10.3928/01477447-20130426-30.
drogel for in situ three-dimensional multilayer bioprint- 62. Cook D, Julias M and Nauman E, 2014, Biological va-
ing. Angewandte Chemie International Edition, vol. riability in biomechanical engineering research: Signi-
54(13): 3957–3961. ficance and meta-analysis of current modeling practices.
http://dx.doi.org/10.1002/anie.201411383. Journal of Biomechanics, vol.47(6): 1241–1250.
52. Wüst S, Godla M E, Müller R, et al. 2014, Tunable hy- http://dx.doi.org/10.1016/j.jbiomech.2014.01.040.
drogel composite with two-step processing in combina- 63. Hong-Seok P and Chintal S, 2015, Development of high
tion with innovative hardware upgrade for cell-based speed and high accuracy 3D dental intra oral scanner.
three-dimensional bioprinting. Acta Biomaterialia, vol. Procedia Engineering, vol.100: 1174–1181.
10(2): 630–640. http://dx.doi.org/10.1016/j.proeng.2015.01.481.
http://dx.doi.org/10.1016/j.actbio.2013.10.016. 64. Nam S Y, Ricles L M, Suggs L J, et al. 2014, Imaging
53. Mironov V, Visconti R P, Kasyanov V, et al. 2009, Or- strategies for tissue engineering applications. Tissue En-
gan printing: Tissue spheroids as building blocks. Bio- gineering Part B: Reviews, vol.21(1): 88–102.
materials, vol.30(12): 2164–2174. http://dx.doi.org/10.1089/ten.teb.2014.0180.
http://dx.doi.org/10.1016/j.biomaterials.2008.12.084. 65. Jin Z, 2014, Computational Modelling of Biomechanics
54. Kelm J M, Lorber V, Snedeker J G, et al. 2010, A novel and Biotribology in the Musculoskeletal System, Wood-
concept for scaffold-free vessel tissue engineering: head Publishing, Cambridge, xv–xix.
Self-assembly of microtissue building blocks. Journal of http://dx.doi.org/10.1016/B978-0-85709-661-6.50020-6.
26 International Journal of Bioprinting (2015)–Volume 1, Issue 1

