Page 164 - IJB-10-1
P. 164
International Journal of Bioprinting 3D-printed micro-perfused culture device
Consent for publication 11. Carnero B, Bao-Varela C, Gómez-Varela AI, Álvarez E,
Flores-Arias MT. Microfluidic devices manufacturing with a
Not applicable. stereolithographic printer for biological applications. Mater
Sci Eng C. 2021;129:112388.
Availability of data doi: 10.1016/j.msec.2021.112388
Not applicable. 12. Bhargava KC, Thompson B, Malmstadt N. Discrete
elements for 3D microfluidics. Proc Natl Acad Sci U S A.
References 2014;111(42):15013-15018.
doi: 10.1073/pnas.1414764111
1. Kang L, Chung BG, Langer R, Khademhosseini A. 13. Au AK, Bhattacharjee N, Horowitz LF, Changa TC,
Microfluidics for drug discovery and development: From Folch A. 3D-printed microfluidic automation. Lab Chip.
target selection to product lifecycle management. Drug 2015;15(8):1934-1941.
Discov Today, 2008;13(1-2):1-13. doi: 10.1039/C5LC00126A
doi: 10.1016/j.drudis.2007.10.003
14. Weisgrab G, Ovsianikov A, Costa PF. Functional 3D
2. Toh YC, Lim TC, Tai D, Xiao G, van Noort D, Yu H. A printing for microfluidic chips. Adv Mater Technol.
microfluidic 3D hepatocyte chip for drug toxicity testing. 2019;4(10):1900275.
Lab Chip. 2009;9(14):2026-2035. doi: 10.1002/admt.201900275
doi: 10.1039/b900912d
15. Parthiban P, Vijayan S, Doyle PS, Hashimoto M. Evaluation
3. Becker H, Locascio LE. Polymer microfluidic devices. of 3D-printed molds for fabrication of non-planar
Talanta. 2002;56(2):267-287. microchannels. Biomicrofluidics. 2021;15(2):024111.
doi: 10.1016/s0039-9140(01)00594-x doi: 10.1063/5.0047497
4. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. 16. Yang L, Shridhar SV, Gerwitz M, Soman P. An in vitro
Microfluidic 3D cell culture: From tools to tissue models. vascular chip using 3D printing-enabled hydrogel casting.
Curr Opin Biotechnol. 2015;35:118-126. Biofabrication. 2016;8(3):035015.
doi: 10.1016/j.copbio.2015.05.002 doi: 10.1088/1758-5090/8/3/035015
5. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui 17. Urrios A, Parra-Cabrera C, Bhattacharjee N, et al.
D. Additive manufacturing (3D printing): A review of 3D-printing of transparent bio-microfluidic devices in PEG-
materials, methods, applications and challenges. Compos DA. Lab Chip. 2016;16(12):2287-2294.
Part B Eng. 2018;143:172-196. doi: 10.1039/C6LC00153J
doi: 10.1016/j.compositesb.2018.02.012 18. Yang C, Luo J, Polunas M, et al. 4D-printed transformable
6. Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming tube array for high-throughput 3D cell culture and histology.
3D-printing revolution in microfluidics. Lab Chip. Adv Mater. 2020;32(40):2004285.
2016;16(10):1720-1742. doi: 10.1002/adma.202004285
doi: 10.1039/C6LC00163G 19. Ong LJY, Islam A, DasGupta R, et al. A 3D printed
7. Yazdi AA, Popma A, Wong W, Nguyen T, Pan Y, Xu J. 3D microfluidic perfusion device for multicellular spheroid
printing: an emerging tool for novel microfluidics and lab- cultures. Biofabrication. 2017;9(4):045005.
on-a-chip applications. Microfluid Nanofluid. 2016;20(3):50. doi: 10.1002/adma.202004285
doi: 10.1007/s10404-016-1715-4 20. Sweet E, Yang B, Chen J, et al. 3D microfluidic gradient
8. Arshavsky-Graham S, Enders A, Ackerman S, Bahnemann generator for combination antimicrobial susceptibility
J, Segal E. 3D-printed microfluidics integrated with optical testing. Microsyst Nanoeng. 2020;6(1):92.
nanostructured porous aptasensors for protein detection. doi: 10.1038/s41378-020-00200-7
Microchim Acta. 2021;188(3):67. 21. Cabaleiro JM. Flowrate independent 3D printed
doi: 10.1088/1361-6439/aa7117 microfluidic concentration gradient generator. Chem Eng J.
9. Li F, Macdonald NP, Guijt RM, Breadmore MC. Increasing 2020;382:122742.
the functionalities of 3D printed microchemical devices by doi: 10.1016/j.cej.2019.122742
single material, multimaterial, and print-pause-print 3D 22. Kitson PJ, Glatzel S, Chen W, Chen W, Lin C-G, Song Y-F,
printing. Lab Chip. 2019;19(1):35-49. Cronin L. 3D printing of versatile reactionware for chemical
doi: 10.1039/C8LC00826D synthesis. Nat Protoc. 2016;11(5):920-936.
10. Razavi Bazaz S, Rouhi O, Raoufi MA, et al. 3D printing of doi: 10.1038/nprot.2016.041
inertial microfluidic devices. Sci Rep. 2020;10(1):5929. 23. Ota H, Kodama T, Miki N. Rapid formation of size-
doi: 10.1038/s41598-020-62569-9 controlled three dimensional hetero-cell aggregates using
Volume 10 Issue 1 (2024) 156 https://doi.org/10.36922/ijb.0226

