Page 164 - IJB-10-1
P. 164

International Journal of Bioprinting                                3D-printed micro-perfused culture device



            Consent for publication                            11.  Carnero B, Bao-Varela C, Gómez-Varela AI, Álvarez E,
                                                                  Flores-Arias MT. Microfluidic devices manufacturing with a
            Not applicable.                                       stereolithographic printer for biological applications. Mater
                                                                  Sci Eng C. 2021;129:112388.
            Availability of data                                  doi: 10.1016/j.msec.2021.112388
            Not applicable.                                    12.  Bhargava KC, Thompson B, Malmstadt N. Discrete
                                                                  elements for 3D microfluidics. Proc Natl Acad Sci U S A.
            References                                            2014;111(42):15013-15018.
                                                                  doi: 10.1073/pnas.1414764111
            1.   Kang L, Chung BG, Langer R, Khademhosseini A.   13.  Au AK, Bhattacharjee N, Horowitz LF, Changa TC,
               Microfluidics  for drug  discovery  and  development:  From   Folch A. 3D-printed microfluidic automation.  Lab Chip.
               target  selection  to product  lifecycle  management.  Drug   2015;15(8):1934-1941.
               Discov Today, 2008;13(1-2):1-13.                   doi: 10.1039/C5LC00126A
               doi: 10.1016/j.drudis.2007.10.003
                                                               14.  Weisgrab G, Ovsianikov A, Costa PF. Functional 3D
            2.   Toh  YC, Lim TC,  Tai  D, Xiao G,  van Noort D,  Yu  H. A   printing for microfluidic chips.  Adv Mater Technol.
               microfluidic 3D hepatocyte chip for drug toxicity testing.   2019;4(10):1900275.
               Lab Chip. 2009;9(14):2026-2035.                    doi: 10.1002/admt.201900275
               doi: 10.1039/b900912d
                                                               15.  Parthiban P, Vijayan S, Doyle PS, Hashimoto M. Evaluation
            3.   Becker H, Locascio LE. Polymer microfluidic devices.   of 3D-printed molds for fabrication of non-planar
               Talanta. 2002;56(2):267-287.                       microchannels. Biomicrofluidics. 2021;15(2):024111.
               doi: 10.1016/s0039-9140(01)00594-x                 doi: 10.1063/5.0047497
            4.   van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T.   16.  Yang L, Shridhar SV, Gerwitz M, Soman P. An in vitro
               Microfluidic 3D cell culture: From tools to tissue models.   vascular chip using 3D printing-enabled hydrogel casting.
               Curr Opin Biotechnol. 2015;35:118-126.             Biofabrication. 2016;8(3):035015.
               doi: 10.1016/j.copbio.2015.05.002                  doi: 10.1088/1758-5090/8/3/035015
            5.   Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui   17.  Urrios  A,  Parra-Cabrera  C,  Bhattacharjee  N,  et  al.
               D. Additive manufacturing (3D printing): A review of   3D-printing of transparent bio-microfluidic devices in PEG-
               materials, methods, applications and challenges.  Compos   DA. Lab Chip. 2016;16(12):2287-2294.
               Part B Eng. 2018;143:172-196.                      doi: 10.1039/C6LC00153J
               doi: 10.1016/j.compositesb.2018.02.012          18.  Yang C, Luo J, Polunas M, et al. 4D-printed transformable
            6.   Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming   tube array for high-throughput 3D cell culture and histology.
               3D-printing revolution in microfluidics.  Lab Chip.   Adv Mater. 2020;32(40):2004285.
               2016;16(10):1720-1742.                             doi: 10.1002/adma.202004285
               doi: 10.1039/C6LC00163G                         19.  Ong LJY, Islam A, DasGupta R, et al. A 3D printed

            7.   Yazdi AA, Popma A, Wong W, Nguyen T, Pan Y, Xu J. 3D   microfluidic perfusion device for multicellular spheroid
               printing: an emerging tool for novel microfluidics and lab-  cultures. Biofabrication. 2017;9(4):045005.
               on-a-chip applications. Microfluid Nanofluid. 2016;20(3):50.     doi: 10.1002/adma.202004285
               doi: 10.1007/s10404-016-1715-4                  20.  Sweet E, Yang B, Chen J, et al. 3D microfluidic gradient
            8.   Arshavsky-Graham S, Enders A, Ackerman S, Bahnemann   generator  for  combination antimicrobial  susceptibility
               J, Segal E. 3D-printed microfluidics integrated with optical   testing. Microsyst Nanoeng. 2020;6(1):92.
               nanostructured porous aptasensors for protein detection.      doi: 10.1038/s41378-020-00200-7
               Microchim Acta. 2021;188(3):67.                 21.  Cabaleiro JM. Flowrate independent 3D printed
               doi: 10.1088/1361-6439/aa7117                      microfluidic concentration gradient generator. Chem Eng J.
            9.   Li F, Macdonald NP, Guijt RM, Breadmore MC. Increasing   2020;382:122742.
               the functionalities of 3D printed microchemical devices by   doi: 10.1016/j.cej.2019.122742
               single material, multimaterial, and print-pause-print 3D   22.  Kitson PJ, Glatzel S, Chen W, Chen W, Lin C-G, Song Y-F,
               printing. Lab Chip. 2019;19(1):35-49.              Cronin L. 3D printing of versatile reactionware for chemical
               doi: 10.1039/C8LC00826D                            synthesis. Nat Protoc. 2016;11(5):920-936.
            10.  Razavi Bazaz S, Rouhi O, Raoufi MA, et al. 3D printing of      doi: 10.1038/nprot.2016.041
               inertial microfluidic devices. Sci Rep. 2020;10(1):5929.  23.  Ota  H,  Kodama  T,  Miki  N.  Rapid  formation  of  size-
               doi: 10.1038/s41598-020-62569-9                    controlled  three  dimensional  hetero-cell  aggregates  using



            Volume 10 Issue 1 (2024)                       156                        https://doi.org/10.36922/ijb.0226
   159   160   161   162   163   164   165   166   167   168   169