Page 165 - IJB-10-1
P. 165
International Journal of Bioprinting 3D-printed micro-perfused culture device
micro-rotation flow for spheroid study. Biomicrofluidics. 35. Isomursu A, Park K-Y, Hou J, et al. Directed cell migration
2011;5(3):34105-3410515. towards softer environments. Nat Mater. 2022;21(9):1081-1090.
doi: 10.1063%2F1.3609969 doi: 10.1038/s41563-022-01294-2
24. Martinez Galvez JM, Garcia-Hernando M, Benito-Lopez F, 36. Liu H, Wu M, Jia Y, Niu L, Huang G, Xu F. Control of
Basabe-Desmonts L, Shnyrova AV. Microfluidic chip with fibroblast shape in sequentially formed 3D hybrid hydrogels
pillar arrays for controlled production and observation regulates cellular responses to microenvironmental cues.
of lipid membrane nanotubes. Lab Chip. 2020;20(15): NPG Asia Mater. 2020;12(1):45.
2748-2755. doi: 10.1038/s41427-020-0226-7
doi: 10.1039/D0LC00451K 37. Zhang W, Huang G, Xu F. Engineering biomaterials and
25. Bischel LL, Young EW, Mader BR, Beebe DJ. Tubeless approaches for mechanical stretching of cells in three
microfluidic angiogenesis assay with three-dimensional dimensions. Front Bioeng Biotechnol. 2020;8:589590.
endothelial-lined microvessels. Biomaterials. 2013;34(5): doi: 10.3389/fbioe.2020.589590
1471-1477. 38. Yu F, Deng R, Hao Tong W, et al. A perfusion incubator
doi: 10.1016/j.biomaterials.2012.11.005 liver chip for 3D cell culture with application on chronic
26. Bersini S, Jeon JS, Dubini G, et al. A microfluidic 3D in vitro hepatotoxicity testing. Sci Rep. 2017;7(1):14528.
model for specificity of breast cancer metastasis to bone. doi: 10.1038/s41598-017-13848-5
Biomaterials. 2014;35(8):2454-2461. 39. Mogosanu D-E, Verplancke R, Dubruel P, Vanfleteren J.
doi: 10.1016/j.biomaterials.2013.11.050 Fabrication of 3-dimensional biodegradable microfluidic
27. Knowlton S, Yu CH, Ersoy F, Emadi S, Khademhosseini A, environments for tissue engineering applications. Mater
Tasoglu S. 3D-printed microfluidic chips with patterned, Design. 2016;89:1315-1324.
cell-laden hydrogel constructs. Biofabrication. 2016;8(2): https://www.researchgate.net/publication/283910649_
025019. mogosanu_2015_MADE_published
doi: 10.1088/1758-5090/8/2/025019 40. Justice BA, Badr NA, Felder RA. 3D cell culture opens
28. Yang Q, Ju D, Liu Y, et al. Design of organ-on-a- new dimensions in cell-based assays. Drug Discov Today.
chip to improve cell capture efficiency. Int J Mech Sci. 2009;14(1-2):102-107.
2021;209:106705. doi: 10.1016/j.drudis.2008.11.006
doi: 10.1016/j.ijmecsci.2021.106705 41. Khademhosseini A, Langer R. A decade of progress in tissue
29. Ma Y, Han T, Yang Q, et al. Viscoelastic cell microenvironment: engineering. Nat Protoc. 2016;11(10):1775-1781.
Hydrogel-based strategy for recapitulating dynamic ECM doi: 10.1038/nprot.2016.123
mechanics. Adv Funct Mater. 2021;31(24):2100848. 42. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological
doi: 10.1002/adfm.202100848 strategies for engineering complex tissues. Nat Nanotechnol.
30. Kim YT, Bohjanen S, Bhattacharjee N, Folch A. Partitioning 2011;6(1):13-22.
of hydrogels in 3D-printed microchannels. Lab Chip. doi: 10.1038/nnano.2010.246
2019;19(18):3086-3093. 43. Toh YC, Zhang C, Zhang J, et al. A novel 3D mammalian
doi: 10.1039/C9LC00535H cell perfusion-culture system in microfluidic channels. Lab
31. Wang X, Yang C, Yu Y, Zhao Y. In situ 3D bioprinting living Chip. 2007;7(3):302-309.
photosynthetic scaffolds for autotrophic wound healing. doi: 10.1039/b614872g
Research. 2022;2022:9794745. 44. Ingber DE. Human organs-on-chips for disease modelling,
doi: 10.34133/2022/9794745 drug development and personalized medicine. Nat Rev
32. Wang X, Yu Y, Yang C, et al. Microfluidic 3D printing Genet. 2022;23(8):467-491.
responsive scaffolds with biomimetic enrichment doi: 10.1038/s41576-022-00466-9
channels for bone regeneration. Adv Funct Mater. 45. Chen H, Peng Y, Wu S, Tan LP. Electrospun 3D fibrous
2021;31(40):2105190. scaffolds for chronic wound repair. Materials (Basel,
doi: 10.1002/adfm.202105190 Switzerland). 2016;9(4):272.
33. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. doi: 10.3390/ma9040272
Nanofiber technology: Designing the next generation of 46. Ng FL, Ong YO, Chen HZ, et al. A facile method for
tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59(14): fabricating a three-dimensional aligned fibrous scaffold for
1413-1433. vascular application. RSC Adv. 2019;9(23):13054-13064.
doi: 10.1016/j.addr.2007.04.022 doi: 10.1039/C9RA00661C
34. D’Arcangelo E, McGuigan AP. Micropatterning strategies 47. Loh QL, Choong C. Three-dimensional scaffolds for tissue
to engineer controlled cell and tissue architecture in vitro. engineering applications: Role of porosity and pore size.
Biotechniques. 2015;58(1):13-23. Tissue Eng Part B Rev. 2013;19(6):485-502.
doi: 10.2144/000114245 doi: 10.1089/ten.TEB.2012.0437
Volume 10 Issue 1 (2024) 157 https://doi.org/10.36922/ijb.0226

