Page 165 - IJB-10-1
P. 165

International Journal of Bioprinting                                3D-printed micro-perfused culture device



               micro-rotation flow for spheroid study.  Biomicrofluidics.   35.  Isomursu A, Park K-Y, Hou J, et al. Directed cell migration
               2011;5(3):34105-3410515.                           towards softer environments. Nat Mater. 2022;21(9):1081-1090.
               doi: 10.1063%2F1.3609969                           doi: 10.1038/s41563-022-01294-2
            24.  Martinez Galvez JM, Garcia-Hernando M, Benito-Lopez F,   36.  Liu H, Wu M, Jia Y, Niu L, Huang G, Xu F. Control of
               Basabe-Desmonts L, Shnyrova AV. Microfluidic chip with   fibroblast shape in sequentially formed 3D hybrid hydrogels
               pillar arrays for controlled production and observation   regulates cellular responses to microenvironmental cues.
               of lipid membrane nanotubes.  Lab Chip. 2020;20(15):   NPG Asia Mater. 2020;12(1):45.
               2748-2755.                                         doi: 10.1038/s41427-020-0226-7
               doi: 10.1039/D0LC00451K                         37.  Zhang W, Huang G, Xu F. Engineering biomaterials and
            25.  Bischel LL, Young EW, Mader BR, Beebe  DJ. Tubeless   approaches for mechanical stretching of cells in three
               microfluidic angiogenesis assay with three-dimensional   dimensions. Front Bioeng Biotechnol. 2020;8:589590.
               endothelial-lined microvessels.  Biomaterials. 2013;34(5):      doi: 10.3389/fbioe.2020.589590
               1471-1477.                                      38.  Yu F, Deng R, Hao Tong W, et al. A perfusion incubator
               doi: 10.1016/j.biomaterials.2012.11.005            liver  chip for 3D  cell  culture with application on chronic
            26.  Bersini S, Jeon JS, Dubini G, et al. A microfluidic 3D in vitro   hepatotoxicity testing. Sci Rep. 2017;7(1):14528.
               model for specificity of breast cancer metastasis to bone.      doi: 10.1038/s41598-017-13848-5
               Biomaterials. 2014;35(8):2454-2461.             39.  Mogosanu D-E, Verplancke R, Dubruel P, Vanfleteren J.
               doi: 10.1016/j.biomaterials.2013.11.050            Fabrication of 3-dimensional biodegradable microfluidic
            27.  Knowlton S, Yu CH, Ersoy F, Emadi S, Khademhosseini A,   environments  for  tissue  engineering  applications.  Mater
               Tasoglu S. 3D-printed microfluidic chips with patterned,   Design. 2016;89:1315-1324.
               cell-laden hydrogel constructs.  Biofabrication. 2016;8(2):   https://www.researchgate.net/publication/283910649_
               025019.                                            mogosanu_2015_MADE_published
               doi: 10.1088/1758-5090/8/2/025019               40.  Justice BA, Badr NA, Felder RA. 3D cell culture opens
            28.  Yang Q, Ju D, Liu Y, et al. Design of organ-on-a-  new dimensions in cell-based assays.  Drug Discov Today.
               chip  to  improve  cell  capture  efficiency.  Int J Mech Sci.   2009;14(1-2):102-107.
               2021;209:106705.                                   doi: 10.1016/j.drudis.2008.11.006
               doi: 10.1016/j.ijmecsci.2021.106705             41.  Khademhosseini A, Langer R. A decade of progress in tissue
            29.  Ma Y, Han T, Yang Q, et al. Viscoelastic cell microenvironment:   engineering. Nat Protoc. 2016;11(10):1775-1781.
               Hydrogel-based strategy for recapitulating dynamic ECM      doi: 10.1038/nprot.2016.123
               mechanics. Adv Funct Mater. 2021;31(24):2100848.  42.  Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological
               doi: 10.1002/adfm.202100848                        strategies for engineering complex tissues. Nat Nanotechnol.
            30.  Kim YT, Bohjanen S, Bhattacharjee N, Folch A. Partitioning   2011;6(1):13-22.
               of hydrogels in 3D-printed microchannels.  Lab Chip.      doi: 10.1038/nnano.2010.246
               2019;19(18):3086-3093.                          43.  Toh YC, Zhang C, Zhang J, et al. A novel 3D mammalian
               doi: 10.1039/C9LC00535H                            cell perfusion-culture system in microfluidic channels. Lab
            31.  Wang X, Yang C, Yu Y, Zhao Y. In situ 3D bioprinting living   Chip. 2007;7(3):302-309.
               photosynthetic scaffolds for autotrophic wound healing.      doi: 10.1039/b614872g
               Research. 2022;2022:9794745.                    44.  Ingber DE. Human organs-on-chips for disease modelling,
               doi: 10.34133/2022/9794745                         drug development and personalized medicine.  Nat Rev
            32.  Wang X, Yu Y, Yang C, et al. Microfluidic 3D printing   Genet. 2022;23(8):467-491.
               responsive  scaffolds  with  biomimetic  enrichment     doi: 10.1038/s41576-022-00466-9
               channels for bone regeneration.  Adv Funct Mater.   45.  Chen  H,  Peng  Y,  Wu  S,  Tan  LP.  Electrospun  3D  fibrous
               2021;31(40):2105190.                               scaffolds for chronic wound repair.  Materials (Basel,
               doi: 10.1002/adfm.202105190                        Switzerland). 2016;9(4):272.
            33.  Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL.      doi: 10.3390/ma9040272
               Nanofiber technology: Designing the next generation of   46.  Ng FL, Ong YO, Chen HZ, et al. A facile method for
               tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59(14):   fabricating a three-dimensional aligned fibrous scaffold for
               1413-1433.                                         vascular application. RSC Adv. 2019;9(23):13054-13064.
               doi: 10.1016/j.addr.2007.04.022                    doi: 10.1039/C9RA00661C
            34.  D’Arcangelo E, McGuigan AP. Micropatterning strategies   47.  Loh QL, Choong C. Three-dimensional scaffolds for tissue
               to engineer controlled cell and tissue architecture in vitro.   engineering applications: Role of porosity and pore size.
               Biotechniques. 2015;58(1):13-23.                   Tissue Eng Part B Rev. 2013;19(6):485-502.
               doi: 10.2144/000114245                             doi: 10.1089/ten.TEB.2012.0437

            Volume 10 Issue 1 (2024)                       157                        https://doi.org/10.36922/ijb.0226
   160   161   162   163   164   165   166   167   168   169   170