Page 166 - IJB-10-1
P. 166
International Journal of Bioprinting 3D-printed micro-perfused culture device
48. Brown JH, Das P, DiVito MD, Ivancic D, Tan LP, Wertheim 59. Kreß S, Schaller-Ammann R, Feiel J, Priedl J, Kasper C, Egger
JA. Nanofibrous PLGA electrospun scaffolds modified with Dominik. 3D printing of cell culture devices: Assessment
type I collagen influence hepatocyte function and support and prevention of the cytotoxicity of photopolymers for
viability in vitro. Acta Biomater. 2018;73:217-227. stereolithography. Materials (Basel). 2020;13(13):3011.
doi: 10.1016/j.actbio.2018.02.009 doi: 10.3390/ma13133011
49. Das P, DiVito MD, Wertheim JA, Tan LP. Bioengineered 60. Bean AC, Tuan RS. Fiber diameter and seeding density
3D electrospun nanofibrous scaffold with human liver cells influence chondrogenic differentiation of mesenchymal
to study alcoholic liver disease in vitro. Integr Biol (Camb). stem cells seeded on electrospun poly(ε-caprolactone)
2021;13(7):184-195. scaffolds. Biomed Mater. 2015;10(1):015018.
doi: 10.1093/intbio/zyab011 doi: 10.1088/1748-6041/10/1/015018
50. Das P, DiVito MD, Wertheim JA, Tan LP. Collagen-I and 61. Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic
fibronectin modified three-dimensional electrospun PLGA differentiation of human mesenchymal stem cells on oriented
scaffolds for long-term in vitro maintenance of functional nanofibrous scaffolds: Engineering the superficial zone of
hepatocytes. Mater Sci Eng C. 2020;111:110723. articular cartilage. Tissue Eng Part A. 2009;15(4):913-921.
doi: 10.1016/j.msec.2020.110723 doi: 10.1089/ten.tea.2008.0109
51. Chor A, Gonçalves RP, Costa AM, et al. In vitro degradation 62. Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale
of electrospun poly(lactic-co-glycolic acid) (PLGA) for oral versus nanoscale scaffold architecture for mesenchymal stem
mucosa regeneration. Polymers (Basel). 2020;12(8):1853. cell chondrogenesis. Tissue Eng Part A. 2011;17(5-6):831-840.
doi: 10.3390/polym12081853 doi: 10.1089/ten.TEA.2010.0409
52. Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore 63. Powers MJ, Domansky K, Kaazempur-Mofrad MR, et al.
MC. Cost-effective three-dimensional printing of visibly A microfabricated array bioreactor for perfused 3D liver
transparent microchips within minutes. Anal Chem. culture. Biotechnol Bioeng. 2002;78(3):257-269.
2014;86(6):3124-3130.
doi: 10.1021/ac4041857 64. Mainardi VL, Arrigoni C, Bianchi E, et al. Improving cell
seeding efficiency through modification of fiber geometry in
53. Kim L, Toh YC, Voldman J, Yu H. A practical guide to 3D printed scaffolds. Biofabrication. 2021;13(3):035025.
microfluidic perfusion culture of adherent mammalian cells. doi: 10.1088/1758-5090/abe5b4
Lab Chip. 2007;7(6):681-694.
doi: 10.1039/b704602b 65. Ayala R, Zhang C, Yang D, et al. Engineering the cell-
material interface for controlling stem cell adhesion,
54. Chen ZZ, Gao ZM, Zeng DP, Liu B, Luan Y, Qin K-R. A
Y-shaped microfluidic device to study the combined effect migration, and differentiation. Biomaterials. 2011;32(15):
of wall shear stress and ATP signals on intracellular calcium 3700-3711.
doi: 10.1016/j.biomaterials.2011.02.004
dynamics in vascular endothelial cells. Micromachines
(Basel). 2016;7(11):213. 66. Leferink AM, Hendrikson WJ, Rouwkema J, Karperien
doi: 10.3390/mi7110213 M, van Blitterswijk CA, Moroni L. Increased cell seeding
55. Tang K, Li S, Li P, et al. Shear stress stimulates integrin β1 efficiency in bioplotted three-dimensional PEOT/PBT
trafficking and increases directional migration of cancer scaffolds. J Tissue Eng Regen Med. 2016;10(8):679-689.
cells via promoting deacetylation of microtubules. Biochim doi: 10.1002/term.1842
Biophys Acta (BBA) Mol Cell Res. 2020;1867(5):118676. 67. Ali D, Effect of scaffold architecture on cell seeding
doi: 10.1016/j.bbamcr.2020.118676 efficiency: A discrete phase model CFD analysis. Comput
56. Bhumiratana S, Bernhard J, Cimetta E, Vunjak-Novakovic Biol Med. 2019;109:62-69.
G. Chapter 14—Principles of bioreactor design for tissue doi: 10.1016/j.compbiomed.2019.04.025
engineering, in Principles of Tissue Engineering. 7th ed. 68. Pilarek M, Grabowska I, Ciemerych MA, Dąbkowska K,
R Lanza, R Langer, and J Vacanti, Eds, Academic Press, Szewczyk KW. Morphology and growth of mammalian cells
Boston. 2014;261-278. in a liquid/liquid culture system supported with oxygenated
doi: 10.1016/B978-0-12-398358-9.00014-8 perfluorodecalin. Biotechnol Lett. 2013;35(9):1387-1394.
57. Tay CY, Irvine SA, Boey FY, Tan LP, Venkatraman S. Micro-/ doi: 10.1007/s10529-013-1218-2
nano-engineered cellular responses for soft tissue engineering 69. Natarajan V, Berglund EJ, Chen DX, Kidambi S. Substrate
and biomedical applications. Small. 2011;7(10):1361-1378. stiffness regulates primary hepatocyte functions. RSC Adv.
doi: 10.1002/smll.201100046ç 2015;5(99):80956-80966.
doi: 10.1039/C5RA15208A
58. Ho CM, Ng SH, Li KH, Yoon Y-J. 3D printed microfluidics
for biological applications. Lab Chip. 2015;15(18): 70. Ogu CC, Maxa JL, Drug interactions due to cytochrome
3627-3637. P450. Proc (Bayl Univ Med Cent). 2000;13(4):421-423.
doi: 10.1039/c5lc00685f doi: 10.1080/08998280.2000.11927719
Volume 10 Issue 1 (2024) 158 https://doi.org/10.36922/ijb.0226

