Page 221 - IJB-10-1
P. 221
International Journal of Bioprinting CS-laden microporous bio-ink for cartilage regeneration
doi: 10.3389/fcell.2021.664168 22. Kang HW, Lee SJ, Ko IK, Yoo JJ, Atala A. A 3D bioprinting
system to produce human-scale tissue constructs with
12. Ghosh S, Laha M, Mondal S, Sengupta S, Kaplana DL.
In vitro model of mesenchymal condensation during structural integrity. Nat Biotechnol. 2016;34(3):312–319.
doi: 10.1038/nbt.3413
chondrogenic development. Biomaterials. 2009;30(33):
6530–6540. 23. Ying GL, Jiang N, Maharjan S, et al. Aqueous two-phase
doi: 10.1016/j.biomaterials.2009.08.019 emulsion bioink-enabled 3D bioprinting of porous
hydrogels. Adv Mater. 2018;30(50):e1805460.
13. Chae S, Hong J, Hwangbo H, Kim G. The utility of doi: 10.1002/adma.201805460
biomedical scaffolds laden with spheroids in various
tissue engineering applications. Theranostics. 2021;11(14): 24. Ying G, Jiang N, Parra C, et al. Bioprinted injectable
6818–6832. hierarchically porous gelatin methacryloyl hydrogel
doi: 10.7150/thno.58421 constructs with shape-memory properties. Adv Funct Mater.
2020;30(46).
14. Decarli MC, Amaral R, Santos DPD, et al. Cell spheroids as doi: 10.1002/adfm.202003740
a versatile research platform: formation mechanisms, high
throughput production, characterization and applications. 25. Shi W, Shi H, Fu G, et al. Application of agarose gelatin in
Biofabrication. 2021;13(3):1-37. tissue pre-embedding before dehydration. J Clin Exp Pathol.
doi: 10.1088/1758-5090/abe6f2 2021;37(3):365–366.
doi: 10.13315/j.cnki.cjcep.2021.03.031
15. Mironov V, Visconti RP, Kasyanov V, Gabor Forgacs, Drake
CJ, Markwald RR. Organ printing: Tissue spheroids as 26. Jia L, Hua Y, Zeng J, et al. Bioprinting and regeneration
building blocks. Biomaterials. 2009;30(12):2164–2174. of auricular cartilage using a bioactive bioink based on
doi: 10.1016/j.biomaterials.2008.12.084 microporous photocrosslinkable acellular cartilage matrix.
Bioact Mater. 2022;16(1):66–81.
16. Grevenstein D, Mamilos A, Schmitt VH, et al. Excellent doi: 10.1016/j.bioactmat.2022.02.032
histological results in terms of articular cartilage
regeneration after spheroid-based autologous chondrocyte 27. Van Winkle AP, Gates ID, Kallos MS. Mass transfer limitations
implantation (ACI). Knee Surg Sports Traumatol Arthrosc. in embryoid bodies during human embryonic stem cell
2021;29(2):417–421. differentiation. Cells Tissues Organs. 2012;196(1):34–47.
doi: 10.1007/s00167-020-05976-9 doi: 10.1159/000330691
17. Gryadunova A, Kasamkattil J, Gay MHP, et al. Nose to 28. Lin RZ, Chang HY. Recent advances in three-dimensional
spine: Spheroids generated by human nasal chondrocytes multicellular spheroid culture for biomedical research.
for scaffold-free nucleus pulposus augmentation. Acta Biotechnol J. 2008;3(9–10):1172–1184.
Biomater. 2021;134(4):240–251. doi: 10.1002/biot.200700228
doi: 10.1016/j.actbio.2021.07.064 29. Shi W, Kwon J, Huang Y, et al. Facile tumor spheroids
formation in large quantity with controllable size and high
18. Huang BJ, Hu JC, Athanasiou KA. Effects of passage number
and post-expansion aggregate culture on tissue engineered, uniformity. Sci Rep. 2018;8(1):6837.
self-assembled neocartilage. Acta Biomater. 2016;43(3): doi: 10.1038/s41598-018-25203-3
150–159. 30. Niebruegge S, Bauwens CL, Peerani R, et al. Generation of
doi: 10.1016/j.actbio.2016.07.044 human embryonic stem cell-derived mesoderm and cardiac
cells using size-specified aggregates in an oxygen-controlled
19. Jeon JH, Yun BG, Lim MJ, et al. Rapid cartilage regeneration bioreactor. Biotechnol Bioeng. 2009;102(2):493–507.
of spheroids composed of human nasal septum-derived doi: 10.1002/bit.22065
chondrocyte in rat osteochondral defect model. Tissue Eng
Regen Med. 2020;17(1):81–90. 31. Sart S, Tsai AC, Li Y, et al. Three-dimensional aggregates of
doi: 10.1007/s13770-019-00231-w mesenchymal stem cells: Cellular mechanisms, biological
properties, and applications. Tissue Eng Part B Rev.
20. Wang G, An Y, Zhang X, Pengbing Ding, Bi H, Zhao Z. 2014;20(5):365–380.
Chondrocyte spheroids laden in GelMA/HAMA hybrid doi: 10.1089/ten.TEB.2013.0537
hydrogel for tissue-engineered cartilage with enhanced
proliferation, better phenotype maintenance, and natural 32. Behan K, Dufour A, Garcia O, Kelly D. Methacrylated
morphological structure. Gels. 2021;7(4):247. cartilage ECM-based hydrogels as injectables and bioinks for
doi: 10.3390/gels7040247 cartilage tissue engineering. Biomolecules. 2022;12(2):216.
doi: 10.3390/biom12020216
21. De Moor L, Minne M, Tytgat L, et al. Tuning the phenotype of
cartilage tissue mimics by varying spheroid maturation and 33. Ozbolat IT, Hospodiuk M. Current advances and future
methacrylamide-modified gelatin hydrogel characteristics. perspectives in extrusion-based bioprinting. Biomaterials.
Macromol Biosci. 2021;21(5):e2000401. 2016;76:321–343.
doi: 10.1002/mabi.202000401 doi: 10.1016/j.biomaterials.2015.10.076
Volume 10 Issue 1 (2024) 213 https://doi.org/10.36922/ijb.0161

