Page 221 - IJB-10-1
P. 221

International Journal of Bioprinting                      CS-laden microporous bio-ink for cartilage regeneration




               doi: 10.3389/fcell.2021.664168                  22.  Kang HW, Lee SJ, Ko IK, Yoo JJ, Atala A. A 3D bioprinting
                                                                  system to produce human-scale tissue constructs with
            12.  Ghosh S, Laha M, Mondal S,  Sengupta S, Kaplana DL.
               In vitro model of mesenchymal condensation during      structural integrity. Nat Biotechnol. 2016;34(3):312–319.
                                                                  doi: 10.1038/nbt.3413
               chondrogenic development.  Biomaterials.  2009;30(33):
               6530–6540.                                      23.  Ying GL, Jiang N, Maharjan S,  et al. Aqueous two-phase
               doi: 10.1016/j.biomaterials.2009.08.019            emulsion bioink-enabled 3D bioprinting of porous
                                                                  hydrogels. Adv Mater. 2018;30(50):e1805460.
            13.  Chae S, Hong J, Hwangbo H,  Kim G. The utility of      doi: 10.1002/adma.201805460
               biomedical  scaffolds  laden  with  spheroids  in  various
               tissue engineering applications.  Theranostics.  2021;11(14):   24.  Ying  G,  Jiang  N,  Parra  C,  et  al.  Bioprinted  injectable
               6818–6832.                                         hierarchically  porous  gelatin  methacryloyl hydrogel
               doi: 10.7150/thno.58421                            constructs with shape-memory properties. Adv Funct Mater.
                                                                  2020;30(46).
            14.  Decarli MC, Amaral R, Santos DPD, et al. Cell spheroids as      doi: 10.1002/adfm.202003740
               a versatile research platform: formation mechanisms, high
               throughput  production,  characterization and  applications.   25.  Shi W, Shi H, Fu G, et al. Application of agarose gelatin in
               Biofabrication. 2021;13(3):1-37.                   tissue pre-embedding before dehydration. J Clin Exp Pathol.
               doi: 10.1088/1758-5090/abe6f2                      2021;37(3):365–366.
                                                                  doi: 10.13315/j.cnki.cjcep.2021.03.031
            15.  Mironov V, Visconti RP, Kasyanov V, Gabor Forgacs, Drake
               CJ, Markwald RR. Organ printing: Tissue spheroids as   26.  Jia  L, Hua  Y, Zeng J,  et  al. Bioprinting  and  regeneration
               building blocks. Biomaterials. 2009;30(12):2164–2174.  of auricular cartilage using a bioactive bioink based on
               doi: 10.1016/j.biomaterials.2008.12.084            microporous photocrosslinkable acellular cartilage matrix.
                                                                  Bioact Mater. 2022;16(1):66–81.
            16.  Grevenstein D, Mamilos A, Schmitt VH,  et al. Excellent      doi: 10.1016/j.bioactmat.2022.02.032
               histological results in terms of articular cartilage
               regeneration after spheroid-based autologous chondrocyte   27.  Van Winkle AP, Gates ID, Kallos MS. Mass transfer limitations
               implantation (ACI). Knee Surg Sports Traumatol Arthrosc.   in embryoid bodies during human embryonic stem cell
               2021;29(2):417–421.                                differentiation. Cells Tissues Organs. 2012;196(1):34–47.
               doi: 10.1007/s00167-020-05976-9                    doi: 10.1159/000330691
            17.  Gryadunova  A, Kasamkattil J,  Gay MHP,  et  al. Nose  to   28.  Lin RZ, Chang HY. Recent advances in three-dimensional
               spine: Spheroids generated by human nasal chondrocytes   multicellular spheroid culture for biomedical research.
               for scaffold-free nucleus pulposus augmentation.  Acta   Biotechnol J. 2008;3(9–10):1172–1184.
               Biomater. 2021;134(4):240–251.                     doi: 10.1002/biot.200700228
               doi: 10.1016/j.actbio.2021.07.064               29.  Shi W, Kwon J, Huang Y,  et al. Facile tumor spheroids
                                                                  formation in large quantity with controllable size and high
            18.  Huang BJ, Hu JC, Athanasiou KA. Effects of passage number
               and post-expansion aggregate culture on tissue engineered,   uniformity. Sci Rep. 2018;8(1):6837.
               self-assembled  neocartilage.  Acta Biomater.  2016;43(3):      doi: 10.1038/s41598-018-25203-3
               150–159.                                        30.  Niebruegge S, Bauwens CL, Peerani R, et al. Generation of
               doi: 10.1016/j.actbio.2016.07.044                  human embryonic stem cell-derived mesoderm and cardiac
                                                                  cells using size-specified aggregates in an oxygen-controlled
            19.  Jeon JH, Yun BG, Lim MJ, et al. Rapid cartilage regeneration   bioreactor. Biotechnol Bioeng. 2009;102(2):493–507.
               of spheroids composed of human nasal septum-derived      doi: 10.1002/bit.22065
               chondrocyte in rat osteochondral defect model. Tissue Eng
               Regen Med. 2020;17(1):81–90.                    31.  Sart S, Tsai AC, Li Y, et al. Three-dimensional aggregates of
               doi: 10.1007/s13770-019-00231-w                    mesenchymal stem cells: Cellular mechanisms, biological
                                                                  properties, and applications.  Tissue Eng Part B Rev.
            20.  Wang G, An Y, Zhang X,  Pengbing Ding, Bi H, Zhao Z.   2014;20(5):365–380.
               Chondrocyte spheroids laden in GelMA/HAMA hybrid      doi: 10.1089/ten.TEB.2013.0537
               hydrogel for tissue-engineered cartilage with enhanced
               proliferation, better phenotype maintenance, and natural   32.  Behan K, Dufour A, Garcia O,  Kelly D. Methacrylated
               morphological structure. Gels. 2021;7(4):247.      cartilage ECM-based hydrogels as injectables and bioinks for
               doi: 10.3390/gels7040247                           cartilage tissue engineering. Biomolecules. 2022;12(2):216.
                                                                  doi: 10.3390/biom12020216
            21.  De Moor L, Minne M, Tytgat L, et al. Tuning the phenotype of
               cartilage tissue mimics by varying spheroid maturation and   33.  Ozbolat IT, Hospodiuk M. Current advances and future
               methacrylamide-modified gelatin hydrogel characteristics.   perspectives in extrusion-based bioprinting.  Biomaterials.
               Macromol Biosci. 2021;21(5):e2000401.              2016;76:321–343.
               doi: 10.1002/mabi.202000401                        doi: 10.1016/j.biomaterials.2015.10.076


            Volume 10 Issue 1 (2024)                       213                        https://doi.org/10.36922/ijb.0161
   216   217   218   219   220   221   222   223   224   225   226