Page 281 - IJB-10-1
P. 281
International Journal of Bioprinting Permeability of NiTi gyroid scaffolds
34. Tarkesh Esfahani E, Elahinia MH. Developing an adaptive textiles: Microscale predictions. Compos Part A Appl Sci
controller for a shape memory alloy walking assistive device. Manuf. 2023;167: 107397.
J Vib Control. 2010;16: 1897-1914. doi: 10.1016/j.compositesa.2022.107397
doi: 10.1177/1077546309344163
41. Silin D, Patzek T. Pore space morphology analysis using
35. Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively maximal inscribed spheres. Phys A Stat Mech Its Appl.
manufactured metallic porous biomaterials based on 2006;371: 336-360.
minimal surfaces: A unique combination of topological, doi: 10.1016/j.physa.2006.04.048
mechanical, and mass transport properties. Acta Biomater. 42. Ren Z, Wei D, Wang S, Zhang DZ, Mao S. On the role of
2017;53: 572-584. pre- and postcontour scanning in laser powder bed fusion:
doi: 10.1016/j.actbio.2017.02.024
Thermal-fluid dynamics and laser reflections. Int J Mech Sci.
36. Gómez S, Vlad MD, López J, Fernández E. Design and 2022;226: 107389.
properties of 3D scaffolds for bone tissue engineering. Acta doi: 10.1016/J.IJMECSCI.2022.107389
Biomater. 2016;42: 341-350.
doi: 10.1016/j.actbio.2016.06.032 43. Tan C, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich
TiNi lattice structures: Process optimisation, geometrical
37. Van Bael S, Chai YC, Truscello S, et al. The effect of pore integrity, and phase transformations. Int J Mach Tools
geometry on the in vitro biological behavior of human Manuf. 2019;141: 19-29.
periosteum-derived cells seeded on selective laser-melted doi: 10.1016/j.ijmachtools.2019.04.002
Ti6Al4V bone scaffolds. Acta Biomater. 2012;8: 2824-2834.
doi: 10.1016/j.actbio.2012.04.001 44. Li X, Hao S, Du B, et al. High-performance self-expanding
NiTi stents manufactured by laser powder bed fusion. Metal
38. Chernyshikhin SV, Firsov DG, Shishkovsky IV. Selective Mater Int. 2022;29: 1510-21.
laser melting of pre-alloyed NiTi powder: Single-track study doi: 10.1007/s12540-022-01317-2
and FE modeling with heat source calibration. Materials 45. Lv J, Jia Z, Li J, et al. Electron beam melting fabrication
(Basel). 2021;14: 7486.
doi: 10.3390/ma14237486 of porous Ti6Al4V scaffolds: Cytocompatibility and
osteogenesis. Adv Eng Mater. 2015;17: 1391-1398.
39. Adams KL, Rebenfeld L. Permeability characteristics of doi: 10.1002/ADEM.201400508
multilayer fiber reinforcements. Part I: Experimental
observations. Polym Compos. 1991;12: 179-185. 46. Gu YW, Li H, Tay BY, Lim CS, Yong MS, Khor KA. In
doi: 10.1002/PC.750120307 vitro bioactivity and osteoblast response of porous NiTi
synthesized by SHS using nanocrystalline Ni-Ti reaction
40. Syerko E, Schmidt T, May D, et al. Benchmark exercise on agent. J Biomed Mater Res Part A. 2006;78: 316-323.
image-based permeability determination of engineering doi: 10.1002/JBM.A.30743
Volume 10 Issue 1 (2024) 273 https://doi.org/10.36922/ijb.0119

