Page 281 - IJB-10-1
P. 281

International Journal of Bioprinting                                    Permeability of NiTi gyroid scaffolds




            34.  Tarkesh Esfahani E, Elahinia MH. Developing an adaptive   textiles: Microscale predictions.  Compos  Part A Appl Sci
               controller for a shape memory alloy walking assistive device.   Manuf. 2023;167: 107397.
               J Vib Control. 2010;16: 1897-1914.                 doi: 10.1016/j.compositesa.2022.107397
               doi: 10.1177/1077546309344163
                                                               41.  Silin D, Patzek T. Pore space morphology analysis using
            35.  Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively   maximal inscribed spheres.  Phys A Stat Mech Its Appl.
               manufactured metallic porous biomaterials based on   2006;371: 336-360.
               minimal surfaces: A unique combination of topological,      doi: 10.1016/j.physa.2006.04.048
               mechanical, and mass transport properties. Acta Biomater.   42.  Ren Z, Wei D, Wang S, Zhang DZ, Mao S. On the role of
               2017;53: 572-584.                                  pre- and postcontour scanning in laser powder bed fusion:
               doi: 10.1016/j.actbio.2017.02.024
                                                                  Thermal-fluid dynamics and laser reflections. Int J Mech Sci.
            36.  Gómez S, Vlad MD, López J, Fernández E. Design and   2022;226: 107389.
               properties of 3D scaffolds for bone tissue engineering. Acta      doi: 10.1016/J.IJMECSCI.2022.107389
               Biomater. 2016;42: 341-350.
               doi: 10.1016/j.actbio.2016.06.032               43.  Tan C, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich
                                                                  TiNi lattice structures: Process optimisation, geometrical
            37.  Van Bael S, Chai YC, Truscello S, et al. The effect of pore   integrity, and phase transformations.  Int J Mach Tools
               geometry on the in vitro biological behavior of human   Manuf. 2019;141: 19-29.
               periosteum-derived cells seeded on selective laser-melted      doi: 10.1016/j.ijmachtools.2019.04.002
               Ti6Al4V bone scaffolds. Acta Biomater. 2012;8: 2824-2834.
               doi: 10.1016/j.actbio.2012.04.001               44.  Li X, Hao S, Du B, et al. High-performance self-expanding
                                                                  NiTi stents manufactured by laser powder bed fusion. Metal
            38.  Chernyshikhin SV, Firsov DG, Shishkovsky IV. Selective   Mater Int. 2022;29: 1510-21.
               laser melting of pre-alloyed NiTi powder: Single-track study      doi: 10.1007/s12540-022-01317-2
               and FE modeling with heat source calibration.  Materials   45.  Lv J,  Jia Z,  Li J,  et al.  Electron  beam  melting  fabrication
               (Basel). 2021;14: 7486.
               doi: 10.3390/ma14237486                            of porous Ti6Al4V scaffolds: Cytocompatibility and
                                                                  osteogenesis. Adv Eng Mater. 2015;17: 1391-1398.
            39.  Adams  KL,  Rebenfeld  L.  Permeability  characteristics  of      doi: 10.1002/ADEM.201400508
               multilayer fiber reinforcements. Part I: Experimental
               observations. Polym Compos. 1991;12: 179-185.   46.  Gu YW,  Li H, Tay BY, Lim  CS, Yong MS, Khor KA. In
               doi: 10.1002/PC.750120307                          vitro bioactivity and osteoblast response of porous NiTi
                                                                  synthesized by SHS using nanocrystalline Ni-Ti reaction
            40.  Syerko E, Schmidt T, May D, et al. Benchmark exercise on   agent. J Biomed Mater Res Part A. 2006;78: 316-323.
               image-based permeability  determination of  engineering      doi: 10.1002/JBM.A.30743



































            Volume 10 Issue 1 (2024)                       273                         https://doi.org/10.36922/ijb.0119
   276   277   278   279   280   281   282   283   284   285   286