Page 280 - IJB-10-1
P. 280
International Journal of Bioprinting Permeability of NiTi gyroid scaffolds
TPMS and lattice architectures: A CFD analysis. Eur J Mech 21. Bansiddhi A, Sargeant TD, Stupp SI, Dunand DC. Porous NiTi
B/Fluids. 2020;79: 376-385. for bone implants: A review. Acta Biomater. 2008;4: 773-782.
doi: 10.1016/j.euromechflu.2019.09.015 doi: 10.1016/j.actbio.2008.02.009
11. Pires T, Dunlop JWC, Fernandes PR, Castro APG. 22. Lagoudas DC, Entchev PB, Popov P, Patoor E, Brinson
Computational fluid dynamics simulation of TPMS scaffolds LC, Gao X. Shape memory alloys, part II: Modeling of
for bone tissue engineering. Proc R Soc A Math Phys Eng Sci. polycrystals. Mech Mater. 2006;38: 430-462.
2022;478. doi: 10.1016/j.mechmat.2005.08.003
doi: 10.1098/rspa.2021.0607
23. Miyazaki S, Otsuka K. Development of shape memory alloys.
12. Jalali M, Mohammadi K, Movahhedy MR, et al. SLM ISIJ Int. 1989;29: 353-377.
additive manufacturing of NiTi porous implants: A doi: 10.2355/isijinternational.29.353
review of constitutive models, finite element simulations, 24. Hodgson D, Russell S. Nitinol melting, manufacture and
manufacturing, heat treatment, mechanical, and biomedical fabrication. Minim Invasive Ther Allied Technol. 2000;9:
studies. Metals Mater Int. 2023;2023: 1-34. 61-65.
doi: 10.1007/s12540-023-01401-1
doi: 10.3109/13645700009063051
13. Schoen AH. Infinite periodic minimal surfaces without self- 25. Liu Y, Van Humbeeck J, Stalmans R, Stalmans R, Delaey L.
intersections. NASA TN D-5541. 1970.
Some aspects of the properties of NiTi shape memory alloy.
14. Jinnai H, Nishikawa Y, Ito M, Agard DA, Spontak RJ. J Alloys Compd. 1997;247: 115-121.
Topological similarity of sponge-like bicontinuous doi: 10.1016/S0925-8388(96)02572-8
morphologies differing in length scale. Adv Mater. 2002;14: 26. Tang W, Sundman B, Sandström R, Qiu C. New modelling of
1615-1618. the B2 phase and its associated martensitic transformation in
doi: 10.1002/1521-4095(20021118)14:22<1615::AID- the Ti-Ni system. Acta Mater. 1999;47: 3457-3468.
ADMA1615>3.0.CO;2-S
doi: 10.1016/S1359-6454(99)00193-7
15. Beaudoin AJ, Mihalko WM, Krause WR. Finite element 27. Elahinia M, Koo J, Ahmadian M, Woolsey C. Backstepping
modelling of polymethylmethacrylate flow through
cancellous bone. J Biomech. 1991;24: 127-136. control of a shape memory alloy actuated robotic arm. J Vib
doi: 10.1016/0021-9290(91)90357-S Control. 2005;11: 407-429.
doi: 10.1177/1077546305051201
16. Nauman EA, Fong KE, Keaveny TM. Dependence of 28. Williams G. Book reviews. Crit Public Health. 2008;18:
intertrabecular permeability on flow direction and anatomic 425-427.
site. Ann Biomed Eng. 1999;27: 517-524. doi: 10.1080/09581590802223709
doi: 10.1114/1.195
29. Hadi A, Yousefi-Koma A, Moghaddam MM, Elahinia M,
17. Ali D, Sen S. Finite element analysis of mechanical Ghazavi A. Developing a novel SMA-actuated robotic
behavior, permeability and fluid induced wall shear module. Sensors Actuators A Phys. 2010;162: 72-81.
stress of high porosity scaffolds with gyroid and lattice-
based architectures. J Mech Behav Biomed Mater. 2017;75: doi: 10.1016/j.sna.2010.06.014
262-270. 30. Piquard R, D’Acunto A, Laheurte P, Dudzinski D. Micro-end
doi: 10.1016/j.jmbbm.2017.07.035 milling of NiTi biomedical alloys, burr formation and phase
transformation. Precis Eng. 2014;38: 356-364.
18. Ma S, Tang Q, Feng Q, Song J, Han X, Guo F. Mechanical doi: 10.1016/j.precisioneng.2013.11.006
behaviours and mass transport properties of bone-mimicking
scaffolds consisted of gyroid structures manufactured using 31. Lagoudas DC. Shape Memory Alloys. Boston, MA: Springer
selective laser melting. J Mech Behav Biomed Mater. 2019;93: US. 2008.
158-169. doi: 10.1007/978-0-387-47685-8
doi: 10.1016/j.jmbbm.2019.01.023
32. Biermann D, Kahleyss F, Krebs E, Upmeier T. A study on
19. Shishkovsky I, Morozov Y, Smurov I. Nanofractal surface micro-machining technology for the machining of NiTi: Five-
structure under laser sintering of titanium and nitinol for axis micro-milling and micro deep-hole drilling. J Mater Eng
bone tissue engineering. Appl Surf Sci. 2007;254: 1145-1149. Perform. 2011;20: 745-751.
doi: 10.1016/j.apsusc.2007.09.021 doi: 10.1007/s11665-010-9796-9
20. Chernyshikhin SV, Pelevin IA, Karimi F, Shishkovsky IV. 33. Kanjwal K, Yeasting R, Maloney JD, et al. Retro-cardiac
The study on resolution factors of LPBF technology for esophageal mobility and deflection to prevent thermal injury
manufacturing superelastic NiTi endodontic files. Materials during atrial fibrillation ablation: an anatomic feasibility
(Basel). 2022;15: 6556. study. J Interv Card Electrophysio. 2011;30: 45-53.
doi: 10.3390/ma15196556 doi: 10.1007/s10840-010-9524-2
Volume 10 Issue 1 (2024) 272 https://doi.org/10.36922/ijb.0119

