Page 280 - IJB-10-1
P. 280

International Journal of Bioprinting                                    Permeability of NiTi gyroid scaffolds




               TPMS and lattice architectures: A CFD analysis. Eur J Mech   21.  Bansiddhi A, Sargeant TD, Stupp SI, Dunand DC. Porous NiTi
               B/Fluids. 2020;79: 376-385.                        for bone implants: A review. Acta Biomater. 2008;4: 773-782.
               doi: 10.1016/j.euromechflu.2019.09.015             doi: 10.1016/j.actbio.2008.02.009
            11.  Pires T, Dunlop JWC, Fernandes PR, Castro APG.   22.  Lagoudas DC, Entchev PB, Popov P, Patoor E, Brinson
               Computational fluid dynamics simulation of TPMS scaffolds   LC, Gao X. Shape memory alloys, part II: Modeling of
               for bone tissue engineering. Proc R Soc A Math Phys Eng Sci.   polycrystals. Mech Mater. 2006;38: 430-462.
               2022;478.                                          doi: 10.1016/j.mechmat.2005.08.003
               doi: 10.1098/rspa.2021.0607
                                                               23.  Miyazaki S, Otsuka K. Development of shape memory alloys.
            12.  Jalali M, Mohammadi K, Movahhedy MR, et al. SLM   ISIJ Int. 1989;29: 353-377.
               additive  manufacturing  of  NiTi  porous  implants:  A      doi: 10.2355/isijinternational.29.353
               review of constitutive models, finite element simulations,   24.  Hodgson D, Russell S. Nitinol melting, manufacture and
               manufacturing, heat treatment, mechanical, and biomedical   fabrication.  Minim Invasive Ther Allied Technol.  2000;9:
               studies. Metals Mater Int. 2023;2023: 1-34.        61-65.
               doi: 10.1007/s12540-023-01401-1
                                                                  doi: 10.3109/13645700009063051
            13.  Schoen AH. Infinite periodic minimal surfaces without self-  25.  Liu Y, Van Humbeeck J, Stalmans R, Stalmans R, Delaey L.
               intersections. NASA TN D-5541. 1970.
                                                                  Some aspects of the properties of NiTi shape memory alloy.
            14.  Jinnai  H,  Nishikawa  Y,  Ito  M,  Agard  DA,  Spontak  RJ.   J Alloys Compd. 1997;247: 115-121.
               Topological similarity of  sponge-like bicontinuous      doi: 10.1016/S0925-8388(96)02572-8
               morphologies differing in length scale. Adv Mater. 2002;14:   26.  Tang W, Sundman B, Sandström R, Qiu C. New modelling of
               1615-1618.                                         the B2 phase and its associated martensitic transformation in
               doi: 10.1002/1521-4095(20021118)14:22<1615::AID-   the Ti-Ni system. Acta Mater. 1999;47: 3457-3468.
               ADMA1615>3.0.CO;2-S
                                                                  doi: 10.1016/S1359-6454(99)00193-7
            15.  Beaudoin AJ, Mihalko WM, Krause WR. Finite element   27.  Elahinia M, Koo J, Ahmadian M, Woolsey C. Backstepping
               modelling of polymethylmethacrylate flow through
               cancellous bone. J Biomech. 1991;24: 127-136.      control of a shape memory alloy actuated robotic arm. J Vib
               doi: 10.1016/0021-9290(91)90357-S                  Control. 2005;11: 407-429.
                                                                  doi: 10.1177/1077546305051201
            16.  Nauman EA, Fong KE, Keaveny TM. Dependence of   28.  Williams G. Book reviews.  Crit Public Health. 2008;18:
               intertrabecular permeability on flow direction and anatomic   425-427.
               site. Ann Biomed Eng. 1999;27: 517-524.            doi: 10.1080/09581590802223709
               doi: 10.1114/1.195
                                                               29.  Hadi A, Yousefi-Koma A, Moghaddam MM, Elahinia M,
            17.  Ali D, Sen S. Finite element analysis of mechanical   Ghazavi A. Developing a novel SMA-actuated robotic
               behavior, permeability and fluid induced wall shear   module. Sensors Actuators A Phys. 2010;162: 72-81.
               stress of high porosity scaffolds with gyroid and lattice-
               based architectures. J Mech Behav Biomed Mater. 2017;75:       doi: 10.1016/j.sna.2010.06.014
               262-270.                                        30.  Piquard R, D’Acunto A, Laheurte P, Dudzinski D. Micro-end
               doi: 10.1016/j.jmbbm.2017.07.035                   milling of NiTi biomedical alloys, burr formation and phase
                                                                  transformation. Precis Eng. 2014;38: 356-364.
            18.  Ma S, Tang Q, Feng Q, Song J, Han X, Guo F. Mechanical      doi: 10.1016/j.precisioneng.2013.11.006
               behaviours and mass transport properties of bone-mimicking
               scaffolds consisted of gyroid structures manufactured using   31.  Lagoudas DC. Shape Memory Alloys. Boston, MA: Springer
               selective laser melting. J Mech Behav Biomed Mater. 2019;93:   US. 2008.
               158-169.                                           doi: 10.1007/978-0-387-47685-8
               doi: 10.1016/j.jmbbm.2019.01.023
                                                               32.  Biermann D, Kahleyss F, Krebs E, Upmeier T. A study on
            19.  Shishkovsky I, Morozov Y, Smurov I. Nanofractal surface   micro-machining technology for the machining of NiTi: Five-
               structure under laser sintering of titanium and nitinol for   axis micro-milling and micro deep-hole drilling. J Mater Eng
               bone tissue engineering. Appl Surf Sci. 2007;254: 1145-1149.  Perform. 2011;20: 745-751.
               doi: 10.1016/j.apsusc.2007.09.021                  doi: 10.1007/s11665-010-9796-9
            20.  Chernyshikhin  SV,  Pelevin  IA,  Karimi  F,  Shishkovsky  IV.   33.  Kanjwal K, Yeasting R, Maloney JD, et al. Retro-cardiac
               The study on resolution factors of LPBF technology for   esophageal mobility and deflection to prevent thermal injury
               manufacturing superelastic NiTi endodontic files. Materials   during atrial fibrillation ablation: an anatomic feasibility
               (Basel). 2022;15: 6556.                            study. J Interv Card Electrophysio. 2011;30: 45-53.
               doi: 10.3390/ma15196556                            doi: 10.1007/s10840-010-9524-2




            Volume 10 Issue 1 (2024)                       272                         https://doi.org/10.36922/ijb.0119
   275   276   277   278   279   280   281   282   283   284   285