Page 390 - IJB-10-1
P. 390

International Journal of Bioprinting                                     Design of dual-unit porous scaffold




            16.  Castro APG, Pires T, Santos JE, Gouveia BP, Fernandes PR   27.  Feng J, Fu J, Yao X, He Y. Triply periodic minimal surface
               Permeability versus design in TPMS scaffolds.  Materials.   (TPMS) porous structures: From multi-scale design, precise
               2019;12(8):1313.                                   additive  manufacturing to  multidisciplinary  applications.
               doi: 10.3390/ma12081313                            Int J Extrem Manuf. 2022;4(2):022001.
                                                                  doi: 10.1088/2631-7990/ac5be6
            17.  Zhao B, Gain AK, Ding W, Zhang L, Li X, Fu Yucan. A review
               on metallic porous materials: pore formation, mechanical   28.  Feng J, Wei D, Zhang P, et al. Preparation of TiNbTaZrMo
               properties, and their applications. Int J Adv Manuf Technol.   high-entropy alloy with tunable Young’s modulus
               2018;95(5–8):2641–2659.                            by  selective  laser  melting.  J Manuf Process.  2023;85:
               doi: 10.1007/s00170-017-1415-6                     160–165.
                                                                  doi: 10.1016/j.jmapro.2022.11.046
            18.  Chen SY, Kuo CN, Su YL, et al. Microstructure and fracture
               properties of open-cell porous Ti-6Al-4V with high porosity   29.  Zhao M, Liu F, Fu G, Zhang DZ, Zhang T, Zhou H. Improved
               fabricated by electron beam melting.  Mater Charact.   mechanical properties and energy absorption of BCC lattice
               2018;138:255–262.                                  structures with triply periodic minimal surfaces fabricated
               doi: 10.1016/j.matchar.2018.02.016                 by SLM. Materials. 2018;11(12):2411.
                                                                  doi: 10.3390/ma11122411
            19.  Li J, Cui X, Hooper GJ, Lim KS, Woodfield TBF. Rational
               design, bio-functionalization and biological performance   30.  Karageorgiou V, Kaplan  D. Porosity of 3D  biomaterial
               of hybrid additive manufactured titanium implants for   scaffolds and osteogenesis.  Biomaterials. 2005;26(27):
               orthopaedic applications: A review.  J  Mech  Behav  Biomed   5474–5491.
               Mater. 2020;105:103671.                            doi: 10.1016/j.biomaterials.2005.02.002
               doi: 10.1016/j.jmbbm.2020.103671
                                                               31.  Han C, Li Y, Wang Q, et al. Continuous functionally graded
            20.  Yang N, Quan Z, Zhang D, Yanling T. Multi-morphology   porous  titanium  scaffolds  manufactured by  selective  laser
               transition hybridization CAD design of minimal surface   melting for bone implants.  J Mech Behav Biomed Mater.
               porous structures for use in tissue engineering.  Comput   2018;80:119–127.
               Aided Des. 2014;56:11–21.                          doi: 10.1016/j.jmbbm.2018.01.013
               doi: 10.1016/j.cad.2014.06.006
                                                               32.  Wang S, Liu L, Li K, Zhu L, Chen J, Hao Y. Pore functionally
            21.  Van Bael S, Kerckhofs G, Pyka MMG, Schrooten J, Kruth   graded Ti6Al4V scaffolds  for bone tissue  engineering
               JP. Micro-CT-based improvement of geometrical and   application. Mater Des. 2019;168:107643.
               mechanical controllability of selective laser melted Ti6Al4V      doi: 10.1016/j.matdes.2019.107643
               porous structures. Mater Sci Eng A. 2011;528(24):7423–7431.   33.  Lv Y, Guo J, Zhang Q, et al. Design of low elastic modulus
               doi: 10.1016/j.msea.2011.06.045
                                                                  and high strength TC4 porous scaffolds via new variable
            22.  Lei  H-Y, Li  J-R,  Xu Z-J,  Wang  Q-H.  Parametric  design   gradient strategies. Mater Lett. 2022;325:132616.
               of  Voronoi-based  lattice  porous  structures.  Mater Des.      doi: 10.1016/j.matlet.2022.132616
               2020;191:108607.                                34.  Lv Y, Wang B, Liu G, et al. Metal material, properties
               doi: 10.1016/j.matdes.2020.108607
                                                                  and design methods of porous biomedical scaffolds for
            23.  Wang G, Shen L, Zhao J, et  al. Design and compressive   additive manufacturing: A review. Front Bioeng Biotechnol.
               behavior of controllable irregular porous scaffolds: Based on   2021;9:641130.
               voronoi-tessellation and for additive manufacturing.  ACS      doi: 10.3389/fbioe.2021.641130
               Biomater Sci Eng. 2018;4(2):719–727.            35.  Wang S, Shi Z, Liu L, Zhou X, Zhu L, Hao Yongqiang.
               doi: 10.1021/acsbiomaterials.7b00916
                                                                  The design of Ti6Al4V primitive surface structure with
            24.  McGregor M, Patel S, McLachlin S, Vlasea M. Architectural   symmetrical gradient of pore size in biomimetic bone
               bone parameters and the relationship to titanium lattice   scaffold. Mater Des. 2020;193:108830.
               design for powder bed fusion additive manufacturing. Addit      doi: 10.1016/j.matdes.2020.108830
               Manuf. 2021;47:102273.                          36.  Ma S, Song K, Lan J, Ma L. Biological and mechanical
               doi: 10.1016/j.addma.2021.102273
                                                                  property analysis for designed heterogeneous porous
            25.  Giannitelli SM, Accoto D, Trombetta M, Rainer A. Current   scaffolds based on the refined TPMS. J Mech Behav Biomed
               trends in the design of scaffolds for computer-aided tissue   Mater. 2020;107:103727.
               engineering. Acta Biomater. 2014;10(2):580–594.      doi: 10.1016/j.jmbbm.2020.103727
               doi: 10.1016/j.actbio.2013.10.024
                                                               37.  Yánez A, Cuadrado A, Martel O, joão Afonso H, Monopoli
            26.  Rajagopalan S, Robb RA. Schwarz meets Schwann: Design   D. Gyroid porous titanium structures: A versatile solution
               and fabrication of biomorphic and durataxic tissue   to be used as scaffolds in bone defect reconstruction. Mater
               engineering scaffolds. Med Image Anal. 2006;10(5):693–712.   Des. 2018;140:21–29.
               doi: 10.1016/j.media.2006.06.001                   doi: 10.1016/j.matdes.2017.11.050



            Volume 10 Issue 1 (2024)                       382                          https://doi.org/10.36922/ijb.1263
   385   386   387   388   389   390   391   392   393   394   395