Page 390 - IJB-10-1
P. 390
International Journal of Bioprinting Design of dual-unit porous scaffold
16. Castro APG, Pires T, Santos JE, Gouveia BP, Fernandes PR 27. Feng J, Fu J, Yao X, He Y. Triply periodic minimal surface
Permeability versus design in TPMS scaffolds. Materials. (TPMS) porous structures: From multi-scale design, precise
2019;12(8):1313. additive manufacturing to multidisciplinary applications.
doi: 10.3390/ma12081313 Int J Extrem Manuf. 2022;4(2):022001.
doi: 10.1088/2631-7990/ac5be6
17. Zhao B, Gain AK, Ding W, Zhang L, Li X, Fu Yucan. A review
on metallic porous materials: pore formation, mechanical 28. Feng J, Wei D, Zhang P, et al. Preparation of TiNbTaZrMo
properties, and their applications. Int J Adv Manuf Technol. high-entropy alloy with tunable Young’s modulus
2018;95(5–8):2641–2659. by selective laser melting. J Manuf Process. 2023;85:
doi: 10.1007/s00170-017-1415-6 160–165.
doi: 10.1016/j.jmapro.2022.11.046
18. Chen SY, Kuo CN, Su YL, et al. Microstructure and fracture
properties of open-cell porous Ti-6Al-4V with high porosity 29. Zhao M, Liu F, Fu G, Zhang DZ, Zhang T, Zhou H. Improved
fabricated by electron beam melting. Mater Charact. mechanical properties and energy absorption of BCC lattice
2018;138:255–262. structures with triply periodic minimal surfaces fabricated
doi: 10.1016/j.matchar.2018.02.016 by SLM. Materials. 2018;11(12):2411.
doi: 10.3390/ma11122411
19. Li J, Cui X, Hooper GJ, Lim KS, Woodfield TBF. Rational
design, bio-functionalization and biological performance 30. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial
of hybrid additive manufactured titanium implants for scaffolds and osteogenesis. Biomaterials. 2005;26(27):
orthopaedic applications: A review. J Mech Behav Biomed 5474–5491.
Mater. 2020;105:103671. doi: 10.1016/j.biomaterials.2005.02.002
doi: 10.1016/j.jmbbm.2020.103671
31. Han C, Li Y, Wang Q, et al. Continuous functionally graded
20. Yang N, Quan Z, Zhang D, Yanling T. Multi-morphology porous titanium scaffolds manufactured by selective laser
transition hybridization CAD design of minimal surface melting for bone implants. J Mech Behav Biomed Mater.
porous structures for use in tissue engineering. Comput 2018;80:119–127.
Aided Des. 2014;56:11–21. doi: 10.1016/j.jmbbm.2018.01.013
doi: 10.1016/j.cad.2014.06.006
32. Wang S, Liu L, Li K, Zhu L, Chen J, Hao Y. Pore functionally
21. Van Bael S, Kerckhofs G, Pyka MMG, Schrooten J, Kruth graded Ti6Al4V scaffolds for bone tissue engineering
JP. Micro-CT-based improvement of geometrical and application. Mater Des. 2019;168:107643.
mechanical controllability of selective laser melted Ti6Al4V doi: 10.1016/j.matdes.2019.107643
porous structures. Mater Sci Eng A. 2011;528(24):7423–7431. 33. Lv Y, Guo J, Zhang Q, et al. Design of low elastic modulus
doi: 10.1016/j.msea.2011.06.045
and high strength TC4 porous scaffolds via new variable
22. Lei H-Y, Li J-R, Xu Z-J, Wang Q-H. Parametric design gradient strategies. Mater Lett. 2022;325:132616.
of Voronoi-based lattice porous structures. Mater Des. doi: 10.1016/j.matlet.2022.132616
2020;191:108607. 34. Lv Y, Wang B, Liu G, et al. Metal material, properties
doi: 10.1016/j.matdes.2020.108607
and design methods of porous biomedical scaffolds for
23. Wang G, Shen L, Zhao J, et al. Design and compressive additive manufacturing: A review. Front Bioeng Biotechnol.
behavior of controllable irregular porous scaffolds: Based on 2021;9:641130.
voronoi-tessellation and for additive manufacturing. ACS doi: 10.3389/fbioe.2021.641130
Biomater Sci Eng. 2018;4(2):719–727. 35. Wang S, Shi Z, Liu L, Zhou X, Zhu L, Hao Yongqiang.
doi: 10.1021/acsbiomaterials.7b00916
The design of Ti6Al4V primitive surface structure with
24. McGregor M, Patel S, McLachlin S, Vlasea M. Architectural symmetrical gradient of pore size in biomimetic bone
bone parameters and the relationship to titanium lattice scaffold. Mater Des. 2020;193:108830.
design for powder bed fusion additive manufacturing. Addit doi: 10.1016/j.matdes.2020.108830
Manuf. 2021;47:102273. 36. Ma S, Song K, Lan J, Ma L. Biological and mechanical
doi: 10.1016/j.addma.2021.102273
property analysis for designed heterogeneous porous
25. Giannitelli SM, Accoto D, Trombetta M, Rainer A. Current scaffolds based on the refined TPMS. J Mech Behav Biomed
trends in the design of scaffolds for computer-aided tissue Mater. 2020;107:103727.
engineering. Acta Biomater. 2014;10(2):580–594. doi: 10.1016/j.jmbbm.2020.103727
doi: 10.1016/j.actbio.2013.10.024
37. Yánez A, Cuadrado A, Martel O, joão Afonso H, Monopoli
26. Rajagopalan S, Robb RA. Schwarz meets Schwann: Design D. Gyroid porous titanium structures: A versatile solution
and fabrication of biomorphic and durataxic tissue to be used as scaffolds in bone defect reconstruction. Mater
engineering scaffolds. Med Image Anal. 2006;10(5):693–712. Des. 2018;140:21–29.
doi: 10.1016/j.media.2006.06.001 doi: 10.1016/j.matdes.2017.11.050
Volume 10 Issue 1 (2024) 382 https://doi.org/10.36922/ijb.1263

