Page 391 - IJB-10-1
P. 391

International Journal of Bioprinting                                     Design of dual-unit porous scaffold




            38.  Yoo D-J. Computer-aided porous scaffold design for tissue   46.  Montazerian H, Davoodi E, Asadi-Eydivand M,
               engineering using triply periodic minimal surfaces.  Int  J   Kadkhodapour J, Solati-Hashjin M. Porous scaffold
               Precis Eng Manuf. 2011;12(1):61–71.                internal architecture design based on minimal surfaces: A
               doi: 10.1007/s12541-011-0008-9                     compromise  between  permeability  and  elastic  properties.
            39.  Fan Z, Fu Y, Gao R, Liu S. Investigation on heat transfer   Mater Des. 2017;126:98–114.
               enhancement of phase change material for battery thermal      doi: 10.1016/j.matdes.2017.04.009
               energy storage system based on composite triply periodic   47.  Liu F, Mao Z, Zhang P, Zhang DZ, Jiang J, Ma Z. Functionally
               minimal surface. J Energy Storage. 2023;57:106222.   graded porous scaffolds in multiple patterns: New design
               doi: 10.1016/j.est.2022.106222                     method, physical and mechanical properties.  Mater Des.
            40.  Yan  C,  Hao  L,  Hussein  A,  Young  P.  Ti–6Al–4V  triply   2018;160:849–860.
               periodic minimal surface structures for bone implants      doi: 10.1016/j.matdes.2018.09.053
               fabricated via selective laser melting. J Mech Behav Biomed   48.  Yu G, Li Z, Li S, et al. The select of internal architecture for
               Mater. 2015;51:61–73.                              porous Ti alloy scaffold: A compromise between mechanical
               doi: 10.1016/j.jmbbm.2015.06.024                   properties and permeability. Mater Des. 2020;192:108754.
            41.  Craeghs T, Clijsters S, Yasa E, Bechmann F, Berumen S,      doi: 10.1016/j.matdes.2020.108754
               Kruth J-P. Determination of geometrical factors in layerwise   49.  Cuadrado A, Yánez A, Martel O, Deviaene S, Monopoli D.
               laser melting using optical process monitoring. Opt Lasers   Influence of load orientation and of types of loads on the
               Eng. 2011;49(12):1440–1446.                        mechanical properties of porous Ti6Al4V biomaterials.
               doi: 10.1016/j.optlaseng.2011.06.016               Mater Des. 2017;135:309–318.
            42.  Li X, Xiong Y-Z, Zhang H, Gao R-N. Development of      doi: 10.1016/j.matdes.2017.09.045
               functionally graded porous titanium/silk fibroin composite   50.  Zhao S, Li SJ, Hou WT, Hao YL, Yang R, Misra RDK. The
               scaffold for bone repair. Mater Lett. 2021;282:128670.   influence  of  cell  morphology  on  the  compressive  fatigue
               doi: 10.1016/j.matlet.2020.128670                  behavior of Ti-6Al-4V meshes fabricated by electron
            43.  Maconachie T, Leary M, Lozanovski B, et al. SLM lattice   beam melting.  J Mech Behav Biomed Mater. 2016;59:
               structures: Properties, performance, applications and   251–264.
               challenges, Mater Des. 2019;183:108137.            doi: 10.1016/j.jmbbm.2016.01.034
               doi: 10.1016/j.matdes.2019.108137               51.  Shi X, Yan C, Feng W, Zhang Y, Leng Z. Effect of high layer
            44.  Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S,   thickness on surface quality and defect behavior of Ti-6Al-
               O’Donoghue L, Charitidis C. Additive manufacturing:   4V fabricated by selective laser melting. Opt Laser Technol.
               Scientific and technological challenges, market uptake and   2020;132:106471.
               opportunities. Mater Today. 2018;21:22–37.         doi: 10.1016/j.optlastec.2020.106471
               doi: 10.1016/j.mattod.2017.07.001
                                                               52.  Ataee A, Li Y, Fraser D, Wen C, Song G. Anisotropic Ti-
            45.  Lv Y, Wang B, Liu G, et al. Design of bone-like continuous   6Al-4V  gyroid  scaffolds  manufactured  by  electron  beam
               gradient porous scaffold based on triply periodic minimal   melting (EBM) for bone implant applications.  Mater Des.
               surfaces. J Mater Res Technol. 2022;21:3650–3665.   2018;137:345–354.
               doi: 10.1016/j.jmrt.2022.10.160                    doi: 10.1016/j.matdes.2017.10.040



























            Volume 10 Issue 1 (2024)                       383                          https://doi.org/10.36922/ijb.1263
   386   387   388   389   390   391   392   393   394   395   396