Page 484 - IJB-10-1
P. 484
International Journal of Bioprinting TPMS bone scaffold
Microstructure evaluation and mechanical evolution. J Eur 58. Wang J, Li W, He X, Li Simei, Pan H, Yin Lihua. Injectable
Ceram Soc. 2021;41(2): 1672–1682. platelet-rich fibrin positively regulates osteogenic
doi: 10.1016/j.jeurceramsoc.2020.10.002 differentiation of stem cells from implant hole via the
ERK1/2 pathway. Platelets. 2023;34(1): 2159020.
50. Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively
manufactured metallic porous biomaterials based on minimal doi: 10.1080/09537104.2022.2159020
surfaces: A unique combination of topological, mechanical, and 59. He L, Lin Y, Hu X, Zhang Y, Wu H. A comparative study
mass transport properties. Acta Biomater. 2017;53: 572–584. of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP)
doi: 10.1016/j.actbio.2017.02.024 on the effect of proliferation and differentiation of rat
51. Park S-Y, Kim KS, Al-Mangour B, Grzesiak D, Lee K-A. osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral
Effect of unit cell topology on the tensile loading responses Radiol Endod. 2009;108(5): 707–713.
of additive manufactured CoCrMo triply periodic minimal doi: 10.1016/j.tripleo.2009.06.044
surface sheet lattices. Mater Des. 2021;206: 109778. 60. Sánchez AR, Sheridan PJ, Kupp LI. Is platelet-rich plasma
doi: 10.1016/j.matdes.2021.109778 the perfect enhancement factor? A current review. Int J Oral
52. He D, Li H. Biomaterials affect cell-cell interactions in vitro Maxillofac Implants. 2003;18(1): 93–103.
in tissue engineering. J Mater Sci Technol. 2021;63: 62–72. 61. Mu Z, He Q, Xin L, et al. Effects of injectable platelet rich
doi: 10.1016/j.jmst.2020.03.022 fibrin on bone remodeling in combination with DBBM in
53. Hsieh M-T, Begley MR, Valdevit L. Architected implant maxillary sinus elevation: A randomized preclinical study.
designs for long bones: Advantages of minimal surface- Am J Transl Res. 2020;12(11); 7312–7325.
based topologies. Mater Des. 2021;207: 109838. 62. Kannan S, Ghosh J, Dhara SK. Osteogenic differentiation
doi: 10.1016/j.matdes.2021.109838 potential of porcine bone marrow mesenchymal stem cell
54. Lawrence LM, Salary RR, Miller V, et al. Osteoregenerative subpopulations selected in different basal media. Biol Open.
potential of 3D-printed poly ε-caprolactone tissue scaffolds 2020;9(10).
in vitro using minimally manipulative expansion of primary doi: 10.1242/bio.053280
human bone marrow stem cells. Int J Mol Sci. 2023; 24(5): 4940. 63. Man K, Joukhdar H, Manz XD, et al. Bone tissue engineering
doi: 10.3390/ijms24054940 using 3D silk scaffolds and human dental pulp stromal cells
55. Castro APG, Pires T, Santos JE, Gouveia BP, Fernandes PR. epigenetic reprogrammed with the selective histone deacetylase
Permeability versus design in TPMS scaffolds. Materials. inhibitor MI192. Cell Tissue Res. 2022;388(3): 565–581.
2019;12(8). doi: 10.1007/s00441-022-03613-0
doi: 10.3390/ma12081313 64. Kyyak S, Blatt S, Pabst A, Thiem D, Al-Nawas B, Kämmerer PW.
56. O’Mahony AM, Williams JL, Katz JO, Spencer P. Anisotropic Combination of an allogenic and a xenogenic bone substitute
elastic properties of cancellous bone from a human edentulous material with injectable platelet-rich fibrin - A comparative in
mandible. Clin Oral Implant Res. 2000;11(5): 415–421. vitro study. J Biomater Appl. 2020;35(1): 83–96.
doi: 10.1034/j.1600-0501.2000.011005415.x doi: 10.1177/0885328220914407
57. van Eijden TM. Biomechanics of the mandible. Crit Rev Oral 65. Man K, Jiang LH, Foster R, Yang XB. Immunological responses
Biol Med. 2000;11(1): 123–136. to total hip arthroplasty. J Funct Biomater. 2017;8(3).
doi: 10.1177/10454411000110010101 doi: 10.3390/jfb8030033
Volume 10 Issue 1 (2024) 476 https://doi.org/10.36922/ijb.0153

