Page 19 - IJB-2-1
P. 19
Nazia Mehrban, Gui Zhen Teoh and Martin Anthony Birchall
http://dx.doi.org/10.1016/S0167-7799(03)00033-7 ting technology. Tissue Engineering: Part A, vol.18(11–12):
10. Hollister S J, 2005, Porous scaffold design for tissue en- 1304–1312.
gineering. Nature Materials, vol.4: 518–524. http://dx.doi.org/10.1089/ten.TEA.2011.0543
http://dx.doi.org/10.1038/nmat1421 23. Duocastella M, Colina M, Fernández-Pradas J M, et al.,
11. Seitz H, Rieder W, Irsen S, et al., 2005, Three-dim- 2007, Study of the laser-induced forward transfer of liq-
ensional printing of porous ceramic scaffolds for bone uids for laser bioprinting. Applied Surface Science,
tissue engineering. Journal of Biomedical Materials vol.253(19): 7855–7859.
Research Part B: Applied Biomaterials, vol.74B(2): http://dx.doi.org/10.1016/j.apsusc.2007.02.097
782–788. 24. Mézel C, Souquet A, Hallo L, et al., 2010, Bioprinting
http://dx.doi.org/10.1002/jbm.b.30291 by laser-induced forward transfer for tissue engineering
12. Khademhosseini A, Langer R, Borenstein J, et al., 2006, applications: Jet formation modeling. Biofabrication,
Microscale technologies for tissue engineering and bi- vol.2(1): 014103.
ology. Proceedings of the National Academy of Sciences http://dx.doi.org/10.1088/1758-5082/2/1/014103
of the United States of America, vol.103(8): 2480–2487. 25. Ali M, Pages E, Ducom A, et al., 2014, Controlling la-
http://dx.doi.org/10.1073/pnas.0507681102 ser-induced jet formation for bioprinting mesenchymal
13. Murphy S V and Atala A, 2014, 3D bioprinting of tis- stem cells with high viability and high resolution. Bio-
sues and organs. Nature Biotechnology, vol.32: 773–785. fabrication, vol.6(4): 045001.
http://dx.doi.org/10.1038/nbt.2958 http://dx.doi.org/10.1088/1758-5082/6/4/045001
14. Klebe R J, 1988, Cytoscribing: A method for microposi- 26. Hopp B, Smausz T, Krez N, et al., 2005, Survival and
tioning cells and the construction of two- and three-di- proliferative ability of various living cell types after la-
mensional synthetic tissues. Experimental Cell Research, ser-induced forward transfer. Tissue Engineering,
vol.179(2): 362–373. vol.11(11–12): 1817–1823.
http://dx.doi.org/10.1016/0014-4827(88)90275-3 http://dx.doi.org/10.1089/ten.2005.11.1817
15. Singh M, Haverinen H M, Dhagat P, et al., 2010, Inkjet 27. Guillotin B, Souquet A, Catros S, et al., 2010, Laser as-
printing — process and its applications. Advanced Ma- sisted bioprinting of engineered tissue with high cell
terials, vol.22(6): 673–685. density and microscale organization. Biomaterials,
http://dx.doi.org/10.1002/adma.200901141 vol.31(28): 7250–7256.
16. Cui X, Dean D, Ruggeri Z M, et al., 2010, Cell damage http://dx.doi.org/10.1016/j.biomaterials.2010.05.055
evaluation of thermal inkjet printed Chinese hamster 28. Zopf D A, Hollister S J and Nelson M E, 2013, Biore-
ovary cells. Biotechnology and Bioengineering, sorbable airway splint created with a three-dimensional
vol.106(6): 963–969. printer. The New England Journal of Medicine, vol.368:
http://dx.doi.org/10.1002/bit.22762 2043–2045.
17. Tasoglu S and Demirci U, 2013, Bioprinting for stem http://dx.doi.org/10.1056/NEJMc1206319
cell research. Trends in Biotechnology, vol.31(1): 10–19. 29. Michael S, Sorg H, Peck C-T, et al., 2013, Tissue engi-
http://dx.doi.org/10.1016/j.tibtech.2012.10.005 neered skin substitutes created by laser-assisted bio-
18. Xu C, Zhang M, Huang Y, et al., 2014, Study of droplet printing form skin-like structures in the dorsal skin fold
formation process during drop-on-demand inkjetting of chamber in mice. PLoS ONE, vol.8(3): e57741.
living cell-laden bioink. Langmuir, vol.30(30): 9130– http://dx.doi.org/10.1371/journal.pone.0057741
9138. 30. Keriquel V, Guillemot F, Arnault I, et al., 2010, In vivo
http://dx.doi.org/10.1021/la501430x bioprinting for computer- and robotic-assisted medical
19. Demirci U and Montesano G, 2007, Single cell epitaxy intervention: Preliminary study in mice. Biofabrication,
by acoustic picolitre droplets. Lab on a Chip, vol.7(9): vol.2(1): 014101.
1139–1145. http://dx.doi.org/10.1088/1758-5082/2/1/014101
http://dx.doi.org/10.1039/B704965J 31. Ragaert K, Cardon L, Dekeyser A, et al., 2010, Machine
20. Derby B, 2012, Printing and prototyping of tissues and design and processing considerations for the 3D plotting
scaffolds. Science, vol.338(6109): 921–926. of thermoplastic scaffolds. Biofabrication, vol.2(1):
http://dx.doi.org/10.1126/science.1226340 014107.
21. Skardal A, Mack D, Kapetanovic E, et al., 2012, Bio- http://dx.doi.org/10.1088/1758-5082/2/1/014107
printed amniotic fluid-derived stem cells accelerate 32. Zhang X and Zhang Y, 2015, Tissue engineering appli-
healing of large skin wounds. Stem Cells Translational cations of three-dimensional bioprinting. Cell Bioche-
Medicine, vol.1(11): 792–802. mistry and Biophysics, vol.72(3): 777–782.
http://dx.doi.org/10.5966/sctm.2012-0088 http://dx.doi.org/10.1007/s12013-015-0531-x
th
22. Cui X, Breitenkamp K, Finn MG, et al., 2012, Direct 33. Malda J, Visser J, Melchels F P, et al., 2013, 25 anni-
human cartilage repair using three-dimensional bioprin- versary article: Engineering hydrogels for biofabrication.
International Journal of Bioprinting (2016)–Volume 2, Issue 1 15

