Page 21 - IJB-2-1
P. 21
Nazia Mehrban, Gui Zhen Teoh and Martin Anthony Birchall
58. Murphy C M, Matsiko A, Haugh M G, et al., 2012, Me- Nanostructured Pluronic hydrogels as bioinks for 3D
senchymal stem cell fate is regulated by the composition bioprinting. Biofabrication, vol.7(3): 035006.
and mechanical properties of collagen-glycosaminogl- http://dx.doi.org/10.1088/1758-5090/7/3/035006
ycan scaffolds. Journal of the Mechanical Behaviour of 70. Barry RA, Shepherd R F, Hanson J N, et al., 2009, Di-
Biomedical Materials, vol.11: 53–62. rect-write assembly of 3D hydrogel scaffolds for guided
http://dx.doi.org/10.1016/j.jmbbm.2011.11.009 cell growth. Advanced Materials, vol.21(23): 2407–2410.
59. Shim J H, Kim J Y, Park M, et al., 2011, Development http://dx.doi.org/10.1002/adma.200803702
of a hybrid scaffold with synthetic biomaterials and hy- 71. Cha C, Soman P, Zhu W, et al., 2014, Structural rein-
drogel using solid freeform fabrication technology. Bio- forcement of cell-laden hydrogels with microfabricated
fabrication, vol.3(3): 034102. three dimensional scaffolds. Biomaterials Science,
http://dx.doi.org/10.1088/1758-5082/3/3/034102 vol.2(5): 703–709.
60. Ahn S H, Kim Y B, Lee H J, et al., 2012, A new hybrid http://dx.doi.org/10.1039/C3BM60210A
scaffold constructed of solid freeform-fabricated PCL 72. Geckil H, Xu F, Zhang X, et al., 2010, Engineering hy-
struts and collagen struts for bone tissue regeneration: drogels as extracellular matrix mimics. Nanomedicine
fabrication, mechanical properties, and cellular activity. (London), vol.5(3): 469–484.
Journal of Materials Chemistry, vol.22(31): 15901– http://dx.doi.org/10.2217/nnm.10.12
15909. 73. Frantz C, Stewart K M and Weaver V M, 2010, The
http://dx.doi.org/10.1039/C2JM33310D extracellular matrix at a glance. Journal of Cell Science,
61. Tan H and Marra K G, 2010, Injectable, biodegradable vol.123: 4195–4200.
hydrogels for tissue engineering applications. Materials, http://dx.doi.org/10.1242/jcs.023820
vol.3(3): 1746–1767. 74. Taubenberger A V, Woodruff M A, Bai H, et al., 2010,
http://dx.doi.org/10.3390/ma3031746 The effect of unlocking RGD-motifs in collagen I on
62. Zhu J and Marchant R E, 2011, Design properties of pre-osteoblast adhesion and differentiation. Biomaterials,
hydrogel tissue-engineering scaffolds. Expert Review of vol.31(10): 2827–2835.
Medical Devices, vol.8(5): 607–626. http://dx.doi.org/10.1016/j.biomaterials.2009.12.051
http://dx.doi.org/10.1586/erd.11.27 75. Galus R, Antiszko A and Wlodarski P, 2006, Clinical
63. Hunt JA, Chen R, van Veen T, et al., 2014, Hydrogels applications of hyaluronic acid. Polski Merkuriusz Le-
for tissue engineering and regenerative medicine. Jour- karski, vol.20(119): 606–608.
nal of Materials Chemistry B, vol.2(33): 5319–5338. 76. Skardal A, Zhang J, McCoard L, et al., 2010, Photo-
http://dx.doi.org/10.1039/C4TB00775A crosslinkable hyaluronan-gelatin hydrogels for two-step
64. Ahmed E M, 2015, Hydrogel: Preparation, characteriza- bioprinting. Tissue Engineering: Part A, vol.16(8):
tion, and applications: A review. Journal of Advanced 2675–2685.
Research, vol.6(2): 105–121. http://dx.doi.org/10.1089/ten.TEA.2009.0798
http://dx.doi.org/10.1016/j.jare.2013.07.006 77. Skardal A, Zhang J, McCoard L, et al., 2010, Dynami-
65. Skardal A and Atal A 2015, Biomaterials for integration cally crosslinked gold nanoparticle-hyaluronan hydro-
with 3-D bioprinting. Annals of Biomedical Engineering, gels. Advanced Materials, vol.22(42): 4736–4740.
vol.43(3): 730–746. http://dx.doi.org/10.1002/adma.201001436
http://dx.doi.org/10.1007/s10439-014-1207-1 78. Jackson M R, 2001, Fibrin sealants in surgical practice:
66. Vu LT, Jain G, Veres B D, et al., 2015, Cell migration on An overview. The American Journal of Surgery,
planar and three-dimensional matrices: A hydrogel- vol.182(2): S1–S7.
based perspective. Tissue Engineering Part B: Reviews, http://dx.doi.org/10.1016/S0002-9610(01)00770-X
vol.21(1): 67–74. 79. Traver M A and Assimos D G, 2006, New generation
http://dx.doi.org/10.1089/ten.TEB.2013.0782 tissue sealants and hemostatic agents: Innovative uro-
67. Amsden B, 1998, Solute diffusion within hydrogels. logic applications. Reviews in Urology, vol.8(3): 104–111.
Mechanisms and models. Macromolecules, vol.31(23): 80. Ahmed T A, Dare EV and Hincke M, 2008, Fibrin: a
8382–8395. versatile scaffold for tissue engineering applications.
http://dx.doi.org/10.1021/ma980765f Tissue Engineering Part B: Reviews, vol.14(2): 199–215.
68. Tan H, Li H, Rubin J P, et al., 2011, Controlled gelation http://dx.doi.org/10.1089/ten.teb.2007.0435
and degradation rates of injectable hyaluronic acid- 81. Masutani E M, Kinoshita C K, Tanaka T T, et al., 2014,
based hydrogels through a double crosslinking strategy. Increasing thermal stability of gelatin by UV-induced
Journal of Tissue Engineering and Regenerative Medi- cross-linking with glucose. International Journal of
cine, vol.5(10): 790–797. Biomaterials, vol.2014: Article ID 979636.
http://dx.doi.org/10.1002/term.378 http://dx.doi.org/10.1155/2014/979636
69. Müller M, Becher J, Schnabelrauch M, et al., 2015, 82. Sun J and Tan H, 2013, Alginate-based biomaterials for
International Journal of Bioprinting (2016)–Volume 2, Issue 1 17

