Page 21 - IJB-2-1
P. 21

Nazia Mehrban, Gui Zhen Teoh and Martin Anthony Birchall

              58.  Murphy C M, Matsiko A, Haugh M G, et al., 2012, Me-  Nanostructured  Pluronic hydrogels as bioinks  for 3D
                 senchymal stem cell fate is regulated by the composition   bioprinting. Biofabrication, vol.7(3): 035006.
                 and  mechanical properties of collagen-glycosaminogl-  http://dx.doi.org/10.1088/1758-5090/7/3/035006
                 ycan scaffolds. Journal of the Mechanical Behaviour of   70.  Barry RA, Shepherd R F, Hanson J N, et al., 2009, Di-
                 Biomedical Materials, vol.11: 53–62.               rect-write assembly of 3D hydrogel scaffolds for guided
                 http://dx.doi.org/10.1016/j.jmbbm.2011.11.009      cell growth. Advanced Materials, vol.21(23): 2407–2410.
              59.  Shim J H, Kim J Y, Park M, et al., 2011, Development   http://dx.doi.org/10.1002/adma.200803702
                 of a hybrid scaffold with synthetic biomaterials and hy-  71.  Cha C, Soman P, Zhu W,  et al., 2014, Structural rein-
                 drogel using solid freeform fabrication technology. Bio-  forcement of cell-laden hydrogels with microfabricated
                 fabrication, vol.3(3): 034102.                     three dimensional scaffolds.  Biomaterials Science,
                 http://dx.doi.org/10.1088/1758-5082/3/3/034102     vol.2(5): 703–709.
              60.  Ahn S H, Kim Y B, Lee H J, et al., 2012, A new hybrid   http://dx.doi.org/10.1039/C3BM60210A
                 scaffold  constructed of solid freeform-fabricated  PCL   72.  Geckil H, Xu F, Zhang X, et al., 2010, Engineering hy-
                 struts and  collagen struts  for bone tissue  regeneration:   drogels as extracellular matrix  mimics.  Nanomedicine
                 fabrication, mechanical properties, and cellular activity.   (London), vol.5(3): 469–484.
                 Journal of Materials  Chemistry,  vol.22(31): 15901–   http://dx.doi.org/10.2217/nnm.10.12
                 15909.                                         73.  Frantz C,  Stewart K M  and  Weaver V M,  2010,  The
                 http://dx.doi.org/10.1039/C2JM33310D               extracellular matrix at a glance. Journal of Cell Science,
              61.  Tan H and Marra K G, 2010, Injectable, biodegradable   vol.123: 4195–4200.
                 hydrogels for tissue engineering applications. Materials,   http://dx.doi.org/10.1242/jcs.023820
                 vol.3(3): 1746–1767.                           74.  Taubenberger A V, Woodruff M A, Bai H, et al., 2010,
                 http://dx.doi.org/10.3390/ma3031746                The effect of unlocking  RGD-motifs in  collagen  I  on
              62.  Zhu J and Marchant R E,  2011,  Design properties of   pre-osteoblast adhesion and differentiation. Biomaterials,
                 hydrogel tissue-engineering scaffolds. Expert Review of   vol.31(10): 2827–2835.
                 Medical Devices, vol.8(5): 607–626.                http://dx.doi.org/10.1016/j.biomaterials.2009.12.051
                 http://dx.doi.org/10.1586/erd.11.27            75.  Galus  R, Antiszko A  and  Wlodarski P,  2006, Clinical
              63.  Hunt JA, Chen R, van Veen T, et al., 2014, Hydrogels   applications of hyaluronic acid.  Polski  Merkuriusz Le-
                 for tissue engineering and regenerative medicine. Jour-  karski, vol.20(119): 606–608.
                 nal of Materials Chemistry B, vol.2(33): 5319–5338.   76.  Skardal A,  Zhang J, McCoard  L,  et al., 2010,  Photo-
                 http://dx.doi.org/10.1039/C4TB00775A               crosslinkable hyaluronan-gelatin hydrogels for two-step
              64.  Ahmed E M, 2015, Hydrogel: Preparation, characteriza-  bioprinting.  Tissue Engineering: Part A,  vol.16(8):
                 tion,  and  applications:  A review.  Journal of Advanced   2675–2685.
                 Research, vol.6(2): 105–121.                       http://dx.doi.org/10.1089/ten.TEA.2009.0798
                 http://dx.doi.org/10.1016/j.jare.2013.07.006   77.  Skardal A, Zhang J, McCoard L, et al., 2010, Dynami-
              65.  Skardal A and Atal A 2015, Biomaterials for integration   cally  crosslinked gold nanoparticle-hyaluronan hydro-
                 with 3-D bioprinting. Annals of Biomedical Engineering,   gels. Advanced Materials, vol.22(42): 4736–4740.
                 vol.43(3): 730–746.                                http://dx.doi.org/10.1002/adma.201001436
                 http://dx.doi.org/10.1007/s10439-014-1207-1    78.  Jackson M R, 2001, Fibrin sealants in surgical practice:
              66.  Vu LT, Jain G, Veres B D, et al., 2015, Cell migration on   An overview.  The  American  Journal of Surgery,
                 planar  and  three-dimensional  matrices:  A  hydrogel-   vol.182(2): S1–S7.
                 based perspective. Tissue Engineering Part B: Reviews,   http://dx.doi.org/10.1016/S0002-9610(01)00770-X
                 vol.21(1): 67–74.                              79.  Traver M A and Assimos D G, 2006, New generation
                 http://dx.doi.org/10.1089/ten.TEB.2013.0782        tissue sealants and  hemostatic agents: Innovative uro-
              67.  Amsden B,  1998,  Solute diffusion within hydrogels.   logic applications. Reviews in Urology, vol.8(3): 104–111.
                 Mechanisms and models.  Macromolecules, vol.31(23):   80.  Ahmed  T A, Dare  EV and Hincke  M,  2008, Fibrin:  a
                 8382–8395.                                         versatile scaffold  for tissue engineering applications.
                 http://dx.doi.org/10.1021/ma980765f                Tissue Engineering Part B: Reviews, vol.14(2): 199–215.
              68.  Tan H, Li H, Rubin J P, et al., 2011, Controlled gelation   http://dx.doi.org/10.1089/ten.teb.2007.0435
                 and  degradation rates  of injectable hyaluronic acid-   81.  Masutani E M, Kinoshita C K, Tanaka T T, et al., 2014,
                 based hydrogels through a double crosslinking strategy.   Increasing thermal stability  of gelatin  by  UV-induced
                 Journal of Tissue Engineering and Regenerative Medi-  cross-linking with  glucose.  International Journal of
                 cine, vol.5(10): 790–797.                          Biomaterials, vol.2014: Article ID 979636.
                 http://dx.doi.org/10.1002/term.378                 http://dx.doi.org/10.1155/2014/979636
              69.  Müller  M, Becher J, Schnabelrauch M,  et al., 2015,   82.  Sun J and Tan H, 2013, Alginate-based biomaterials for
                                        International Journal of Bioprinting (2016)–Volume 2, Issue 1      17
   16   17   18   19   20   21   22   23   24   25   26