Page 20 - IJB-2-1
P. 20
3D bioprinting for tissue engineering: Stem cells in hydrogels
Advanced Materials, vol.25(36): 5011–5028. 45. Guo M, Qu X, Zhu W, et al., 2014, Bio-inspired detox-
http://dx.doi.org/10.1002/adma.201302042 ification using 3D-printed hydrogel nanocomposites.
34. Tirella A, Vozzi F, Vozzi G, et al., 2011, PAM2 (Piston Nature Communications, vol.5: 3774.
Assisted Microsyringe): A new rapid prototyping tech- http://dx.doi.org/10.1038/ncomms4774
nique for biofabrication of cell incorporated scaffolds. 46. Dhariwala B, Hunt E and Boland T, 2014, Rapid proto-
Tissue Engineering: Part C, vol. 17(2): 229–237. typing of tissue-engineering constructs, using photopo-
http://dx.doi.org/10.1089/ten.tec.2010.0195 lymerisable hydrogels and stereolithography. Tissue En-
35. DeSimone E, Schacht K, Jungst T, et al., 2015, Biofa- gineering, vol.10(9–10): 1316–1322.
brication of 3D constructs: Fabrication technologies and http://dx.doi.org/10.1089/ten.2004.10.1316
spider silk proteins as bioinks. Pure and Applied Chemi- 47. Lee K Y and Mooney D J, 2001, Hydrogels for tissue
stry, vol.87(8): 737–749. engineering. Chemical Reviews, vol.101(7): 1869–1879.
http://dx.doi.org/10.1515/pac-2015-0106 http://dx.doi.org/10.1021/cr000108x
36. Chang R, Nam J and Sun W, 2008, Effects of dispensing 48. Hutmacher D W, Goh J C and Teoh S H, 2001, An in-
pressure and nozzle diameter on cell survival from solid troduction to biodegradable materials for tissue engi-
freeform fabrication–based direct cell writing. Tissue neering applications. Annals of the Academy of Medi-
Engineering: Part A, vol.14(1): 41–48. cine, Singapore, vol.30: 183–191.
http://dx.doi.org/10.1089/ten.a.2007.0004 49. Drury J L, Mooney D J and 2003, Hydrogels for tissue
37. Khalil S, Nam J and Sun W, 2005, Multi-nozzle deposi- engineering: Scaffold design variables and applications.
tion for construction of 3D biopolymer tissue scaffolds. Biomaterials, vol.24(24): 4337–4351.
Rapid Prototyping Journal, vol.11(1): 9–17. http://dx.doi.org/10.1016/S0142-9612(03)00340-5
http://dx.doi.org/10.1108/13552540510573347 50. O’Brien F J, 2011, Biomaterials & scaffolds for tissue
38. Jakab K, Norotte C, Marga F, et al., 2010, Tissue engi- engineering. Materials Today, vol.14(3): 88–95.
neering by self-assembly and bio-printing of living cells. http://dx.doi.org/10.1016/S1369-7021(11)70058-X
Biofabrication, vol.2(2): 022001. 51. Iwasaki N, Yamane S T, Majima T, et al., 2004, Feasi-
http://dx.doi.org/10.1088/1758-5082/2/2/022001 bility of polysaccharide hybrid materials for scaffolds in
39. Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bi- cartilage tissue engineering: evaluation of chondrocyte
oprinting of heterogeneous aortic valve conduits with adhesion to polyion complex fibers prepared from algi-
alginate/gelatin hydrogels. Journal of Biomedical Mate- nate and chitosan. Biomacromolecules, vol.5(3): 828–833.
rials Research A, vol.101A(5): 1255–1264. http://dx.doi.org/10.1021/bm0400067
http://dx.doi.org/10.1002/jbm.a.34420 52. Costa V C, Costa H S, Vasconcelos W L, et al., 2007,
40. Chang R, Nam J and Sun W, 2008, Direct cell writing of Preparation of hybrid biomaterials for bone tissue engi-
3D microorgan for in vitro pharmacokinetic model. Tis- neering. Materials Research, vol.10(1): 21–26.
sue Engineering Part C: Methods, vol.14(2): 157–166. http://dx.doi.org/10.1590/S1516-14392007000100006
http://dx.doi.org/10.1089/ten.tec.2007.0392 53. Shah A A, Hasan F, Hameed A, et al., 2008, Biological
41. Xu F, Celli J, Rizvi I, et al., 2011, A three-dimensional degradation of plastics: A comprehensive review. Biote-
in vitro ovarian cancer coculture model using a chnology Advances, vol.26(3): 246–265.
high-throughput cell patterning platform. Biotechnology http://dx.doi.org/10.1016/j.biotechadv.2007.12.005
Journal, vol.6(2): 204–212. 54. Göpferich A, 1996, Mechanisms of polymer degradation
http://dx.doi.org/10.1002/biot.201000340 and erosion. Biomaterials, vol.17(2): 103–114.
42. Melchels F P W, Feijen J and Grijpma D W, 2010, A re- http://dx.doi.org/10.1016/0142-9612(96)85755-3
view on stereolithography and its applications in bio- 55. Salacinski H J, Tai N R, Carson R J, et al., 2002, In vitro
medical engineering. Biomaterials, vol.31(24): 6121– stability of a novel compliant poly(carbonate-urea) ure-
6130. thane to oxidative and hydrolytic stress. Journal of
http://dx.doi.org/10.1016/j.biomaterials.2010.04.050 Biomedical Materials Research, vol.59(2): 207–218.
43. Castro N J, O’Brien J and Zhang LG, 2015, Integrating http://dx.doi.org/10.1002/jbm.1234
biologically inspired nanomaterials and table-top stereo- 56. Steven M M and George G H, 2005, Exploring and engi-
lithography for 3D printed biomimetic osteochondral neering the cell surface interface. Science, vol.310(5751):
scaffolds. Nanoscale, vol.7(33): 14010. 1135–1138.
http://dx.doi.org/10.1039/c5nr03425f http://dx.doi.org/10.1126/science.1106587
44. Grogan S P, Chung P H, Soman P, et al., 2013, Digital 57. Seidlits S K, Khaing Z Z, Petersen R R, et al., 2010, The
micromirror device projection printing system for me- effects of hyaluronic acid hydrogels with tunable me-
niscus tissue engineering. Acta Biomaterialia, vol.9(7): chanical properties on neural progenitor cell differentia-
7218–7226. tion. Biomaterials, vol.31(14): 3930–3940.
http://dx.doi.org/10.1016/j.actbio.2013.03.020 http://dx.doi.org/10.1016/j.biomaterials.2010.01.125
16 International Journal of Bioprinting (2016)–Volume 2, Issue 1

