Page 20 - IJB-2-1
P. 20

3D bioprinting for tissue engineering: Stem cells in hydrogels

                 Advanced Materials, vol.25(36): 5011–5028.     45.  Guo M, Qu X, Zhu W, et al., 2014, Bio-inspired detox-
                 http://dx.doi.org/10.1002/adma.201302042           ification  using 3D-printed hydrogel nanocomposites.
              34.  Tirella A, Vozzi F, Vozzi G, et al., 2011, PAM2 (Piston   Nature Communications, vol.5: 3774.
                 Assisted Microsyringe): A new rapid prototyping tech-  http://dx.doi.org/10.1038/ncomms4774
                 nique for biofabrication  of cell incorporated scaffolds.   46.  Dhariwala B, Hunt E and Boland T, 2014, Rapid proto-
                 Tissue Engineering: Part C, vol. 17(2): 229–237.   typing of tissue-engineering constructs, using photopo-
                 http://dx.doi.org/10.1089/ten.tec.2010.0195        lymerisable hydrogels and stereolithography. Tissue En-
              35.  DeSimone E, Schacht K, Jungst T, et al., 2015, Biofa-  gineering, vol.10(9–10): 1316–1322.
                 brication of 3D constructs: Fabrication technologies and   http://dx.doi.org/10.1089/ten.2004.10.1316
                 spider silk proteins as bioinks. Pure and Applied Chemi-  47.  Lee K Y and Mooney D J, 2001, Hydrogels for tissue
                 stry, vol.87(8): 737–749.                          engineering. Chemical Reviews, vol.101(7): 1869–1879.
                 http://dx.doi.org/10.1515/pac-2015-0106            http://dx.doi.org/10.1021/cr000108x
              36.  Chang R, Nam J and Sun W, 2008, Effects of dispensing   48.  Hutmacher D W, Goh J C and Teoh S H, 2001, An in-
                 pressure and nozzle diameter on cell survival from solid   troduction to biodegradable materials for tissue engi-
                 freeform fabrication–based direct cell  writing.  Tissue   neering applications.  Annals of the Academy of Medi-
                 Engineering: Part A, vol.14(1): 41–48.             cine, Singapore, vol.30: 183–191.
                 http://dx.doi.org/10.1089/ten.a.2007.0004      49.  Drury J L, Mooney D J and 2003, Hydrogels for tissue
              37.  Khalil S, Nam J and Sun W, 2005, Multi-nozzle deposi-  engineering: Scaffold design variables and applications.
                 tion for construction of 3D biopolymer tissue scaffolds.   Biomaterials, vol.24(24): 4337–4351.
                 Rapid Prototyping Journal, vol.11(1): 9–17.        http://dx.doi.org/10.1016/S0142-9612(03)00340-5
                 http://dx.doi.org/10.1108/13552540510573347    50.  O’Brien F J, 2011, Biomaterials & scaffolds for tissue
              38.  Jakab K, Norotte C, Marga F, et al., 2010, Tissue engi-  engineering. Materials Today, vol.14(3): 88–95.
                 neering by self-assembly and bio-printing of living cells.   http://dx.doi.org/10.1016/S1369-7021(11)70058-X
                 Biofabrication, vol.2(2): 022001.              51.  Iwasaki N, Yamane S T, Majima T, et al., 2004, Feasi-
                 http://dx.doi.org/10.1088/1758-5082/2/2/022001     bility of polysaccharide hybrid materials for scaffolds in
              39.  Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bi-  cartilage tissue engineering: evaluation  of  chondrocyte
                 oprinting of heterogeneous aortic valve conduits  with   adhesion to polyion complex fibers prepared from algi-
                 alginate/gelatin hydrogels. Journal of Biomedical Mate-  nate and chitosan. Biomacromolecules, vol.5(3): 828–833.
                 rials Research A, vol.101A(5): 1255–1264.          http://dx.doi.org/10.1021/bm0400067
                 http://dx.doi.org/10.1002/jbm.a.34420          52.  Costa V C, Costa H S, Vasconcelos W L, et al., 2007,
              40.  Chang R, Nam J and Sun W, 2008, Direct cell writing of   Preparation of hybrid biomaterials for bone tissue engi-
                 3D microorgan for in vitro pharmacokinetic model. Tis-  neering. Materials Research, vol.10(1): 21–26.
                 sue Engineering Part C: Methods, vol.14(2): 157–166.   http://dx.doi.org/10.1590/S1516-14392007000100006
                 http://dx.doi.org/10.1089/ten.tec.2007.0392    53.  Shah A A, Hasan F, Hameed A, et al., 2008, Biological
              41.  Xu F, Celli J, Rizvi I, et al., 2011, A three-dimensional   degradation of plastics: A comprehensive review. Biote-
                 in vitro  ovarian cancer coculture model  using a   chnology Advances, vol.26(3): 246–265.
                 high-throughput cell patterning platform. Biotechnology   http://dx.doi.org/10.1016/j.biotechadv.2007.12.005
                 Journal, vol.6(2): 204–212.                    54.  Göpferich A, 1996, Mechanisms of polymer degradation
                 http://dx.doi.org/10.1002/biot.201000340           and erosion. Biomaterials, vol.17(2): 103–114.
              42.  Melchels F P W, Feijen J and Grijpma D W, 2010, A re-  http://dx.doi.org/10.1016/0142-9612(96)85755-3
                 view on  stereolithography  and its applications  in  bio-  55.  Salacinski H J, Tai N R, Carson R J, et al., 2002, In vitro
                 medical engineering.  Biomaterials, vol.31(24):  6121–   stability of a novel compliant poly(carbonate-urea) ure-
                 6130.                                              thane to oxidative and hydrolytic stress.  Journal of
                 http://dx.doi.org/10.1016/j.biomaterials.2010.04.050   Biomedical Materials Research, vol.59(2): 207–218.
              43.  Castro N J, O’Brien J and Zhang LG, 2015, Integrating   http://dx.doi.org/10.1002/jbm.1234
                 biologically inspired nanomaterials and table-top stereo-  56.  Steven M M and George G H, 2005, Exploring and engi-
                 lithography for 3D  printed  biomimetic osteochondral   neering the cell surface interface. Science, vol.310(5751):
                 scaffolds. Nanoscale, vol.7(33): 14010.            1135–1138.
                 http://dx.doi.org/10.1039/c5nr03425f               http://dx.doi.org/10.1126/science.1106587
              44.  Grogan S P, Chung P H, Soman P, et al., 2013, Digital   57.  Seidlits S K, Khaing Z Z, Petersen R R, et al., 2010, The
                 micromirror  device  projection printing  system for me-  effects of hyaluronic acid  hydrogels  with  tunable me-
                 niscus tissue engineering. Acta Biomaterialia, vol.9(7):   chanical properties on neural progenitor cell differentia-
                 7218–7226.                                         tion. Biomaterials, vol.31(14): 3930–3940.
                 http://dx.doi.org/10.1016/j.actbio.2013.03.020     http://dx.doi.org/10.1016/j.biomaterials.2010.01.125
            16                          International Journal of Bioprinting (2016)–Volume 2, Issue 1
   15   16   17   18   19   20   21   22   23   24   25