Page 22 - IJB-2-1
P. 22
3D bioprinting for tissue engineering: Stem cells in hydrogels
regenerative medicine applications. Materials, vol.6(4): 94. Gimble J M and Guilak F, 2003, Adipose-derived adult
1285–1309. stem cells: Isolation, characterization, and differentia-
http://dx.doi.org/10.3390/ma6041285 tion potential. Cytotherapy, vol.5(5): 362–369.
83. Duan B, Kapetanovic E, Hockaday L A, et al., 2014, http://dx.doi.org/10.1080/14653240310003026
Three-dimensional printed trileaflet valve conduits us- 95. Winter A, Breit S, Parsch D, et al., 2003, Cartilage-like
ing biological hydrogels and human valve interstitial gene expression in differentiated human stem cell sphe-
cells. Acta Biomaterialia, vol.10(5): 1836–1846. roids: A comparison of bone marrow–derived and adi-
http://dx.doi.org/10.1016/j.actbio.2013.12.005 pose tissue–derived stromal cells. Arthritis and Rheu-
84. Kundu J, Shim J-H, Jang J, et al., 2013, An Additive matology, vol.48(2): 418–429.
manufacturing-based PCL-alginate-chondrocyte bio- http://dx.doi.org/10.1002/art.10767
printed scaffold for cartilage tissue engineering. Journal 96. Barry F P and Murphy J M, 2004, Mesenchymal stem
of Tissue Engineering and Regenerative Medicine, cells: Clinical applications and biological characteriza-
vol.9(11): 1286–1297. tion. The International Journal of Biochemistry and Cell
http://dx.doi.org/10.1002/term.1682 Biology, vol.36(4): 568–584.
85. Rutz A L, Hyland K E, Jakus A E, et al., 2015, A multi- http://dx.doi.org/10.1016/j.biocel.2003.11.001
material bioink method for 3D printing tunable, cell-com- 97. Dalby M J, Riehle M O, Johnstone H, et al., 2002, In
patible hydrogels. Advanced Materials, vol.27(9): 1607– vitro reaction of endothelial cells to polymer demixed
1614. nanotopography. Biomaterials, vol.23(14): 2945–2954.
http://dx.doi.org/10.1002/adma.201405076 http://dx.doi.org/10.1016/S0142-9612(01)00424-0
86. Ozbolat I T, Chen H and Yu Y, 2014, Development of 98. Knoepfler P S, 2009, Deconstructing stem cell tumori-
‘multi-arm bioprinter’ for hybrid biofabrication of tissue genicity: A roadmap to safe regenerative medicine. Stem
engineered constructs. Robotics and Computer-Integ- cells, vol.27(5): 1050–1056.
rated Manufacturing, vol.30(3): 295–304. http://dx.doi.org/10.1002/stem.37
http://dx.doi.org/10.1016/j.rcim.2013.10.005 99. Vats A, Tolley N S, Bishop A E, et al., 2005, Embryonic
87. Khalil S and Sun W, 2009, Bioprinting endothelial cells stem cells and tissue engineering: delivering stem cells
with alginate for 3D tissue constructs. Journal of Bio- to the clinic. Journal of the Royal Society of Medicine,
medical Engineering, vol.131(11): 111002. vol.98(8): 346–350.
http://dx.doi.org/10.1115/1.3128729 http://dx.doi.org/10.1258/jrsm.98.8.346
88. Nakamura M, Iwanaga S, Henmi C, et al., 2010, Bio- 100. Tsai C C, Su P F, Huang Y F, et al., 2012, Oct4 and Na-
matrices and biomaterials for future developments of nog directly regulate Dnmt1 to maintain self-renewal
bioprinting and biofabrication. Biofabrication, vol.2(1): and undifferentiated state in mesenchymal stem cells.
014110. Molecular Cell, vol.47(2): 169–182.
http://dx.doi.org/10.1088/1758-5082/2/1/014110 http://dx.doi.org/10.1016/j.molcel.2012.06.020
89. Pati F, Jang J, Ha D-H, et al., 2013, Printing three-di- 101. Körbling M, Estrov Z and Champlin R, 2003, Adult
mensional tissue analogues with decellularized extra- stem cells and tissue repair. Bone Marrow Transplanta-
cellular matrix bioink. Nature Communications, vol.5: tion, vol.32: S23–S24.
Article number 3935. http://dx.doi.org/10.1038/sj.bmt.1703939
http://dx.doi.org/10.1038/ncomms4935 102. Pittenger M F, Mackay A M, Beck S C, et al., 1999,
90. Xu T, Jin J, Gregory C, et al., 2005, Inkjet printing of Multilineage potential of adult human mesenchymal
viable mammalian cells. Biomaterials, vol.26(1): 93–99. stem cells. Science, vol.284: 143–147.
http://dx.doi.org/10.1016/j.biomaterials.2004.04.011 http://dx.doi.org/10.1126/science.284.5411.143
91. Kolesky D B, Truby R L, Gladman A S, et al., 2014, 3D 103. Sterodimas A, de Faria J Nicaretta B, et al., 2010, Tissue
bioprinting of vascularized, heterogenous cell-laden tis- engineering with adipose-derived stem cells (ADSCs):
sue constructs. Advanced Materials, vol.26(19): 3124– Current and future applications. Journal of Plastic, Re-
3130. constructive & Aesthetic Surgery, vol.63(11): 1886–1892.
http://dx.doi.org/10.1002/adma.201305506 http://dx.doi.org/10.1016/j.bjps.2009.10.028
92. Williams C G, Malik A N, Kim T K, et al., 2005, Varia- 104. Zuk P 2013, Adipose-derived stem cells in tissue rege-
ble cytocompatibility of six cell lines with photoinitia- neration: A review. International Scholarly Research
tors used for polymerizing hydrogels and cell encapsu- Notices, vol.2013: Article ID 713959.
lation. Biomaterials, vol. 26(11): 1211–1218. http://dx.doi.org/10.1155/2013/713959
http://dx.doi.org/10.1016/j.biomaterials.2004.04.024 105. Takahashi K and Yamanaka S, 2006, Induction of pluri-
93. Bianco P and Robey P G, 2001, Stem cells in tissue en- potent stem cells from mouse embryonic and adult fi-
gineering. Nature, vol.414: 118–121. broblast cultures by defined factors. Cell, vol.126(4):
http://dx.doi.org/10.1038/35102181 663–676.
18 International Journal of Bioprinting (2016)–Volume 2, Issue 1

