Page 23 - IJB-2-1
P. 23

Nazia Mehrban, Gui Zhen Teoh and Martin Anthony Birchall

                 http://dx.doi.org/10.1016/j.cell.2006.07.024       Journal of Surgery, vol.102(2): e140–e150.
              106.  Wang A, Tang Z, Park I-H, et al., 2011, Induced pluri-  http://dx.doi.org/10.1002/bjs.9700
                 potent stem cells for neural tissue engineering. Biomate-  117.  Wang S, Lee J M, and Yeong W Y, 2015, Smart hydro-
                 rials, vol.32(22): 5023–502.                       gels for 3D bioprinting.  International Journal  of Bio-
                 http://dx.doi.org/10.1016/j.biomaterials.2011.03.070   printing, vol.1: 3–14.
              107.  Diekman B O, Christoforou N, Willard V P, et al., 2012,   http://dx.doi.org/10.18063/IJB.2015.01.005
                 Cartilage tissue engineering using differentiated and pu-  118.  Seras-Franzoso J, Tsimbouri P M, Burgess K V, et al.,
                 rified induced pluripotent stem cells. Proceedings of the   2014, Topographically targeted osteogenesis of mesen-
                 National Academy of  Sciences of the  United  States of   chymal stem cells  stimulated  by  inclusion  bodies at-
                 America, vol.109: 19172–19177.                     tached  to  polycaprolactone  surfaces.  Nanomedicine,
                 http://dx.doi.org/10.1073/pnas.1210422109          vol.9(2): 207–220.
              108.  De Peppo G M, Marcos-Campos I, Kahler D J, et al.,   http://dx.doi.org/10.2217/nnm.13.43
                 Engineering bone tissue substitutes from human induced   119.  Gruene M, Pflaum M, Deiwick A, et al., 2011 Adipo-
                 pluripotent stem cells.  Proceedings of  the National   genic differentiation  of laser-printed  3D tissue grafts
                 Academy of Sciences  of the  United  States of America,   consisting of human adipose-derived stem cells. Biofa-
                 vol.110: 8680–8685.                                brication, vol.3(1): 015005.
                 http://dx.doi.org/10.1073/pnas.1301190110          http://dx.doi.org/10.1088/1758-5082/3/1/015005
              109.  Cho H-J, Lee C-S, Kwon Y-W, et al., 2010, Induction of   120.  Gao G, Yonezawa T, Hubbell K, et al., 2015, Inkjet-bio-
                 pluripotent stem cells from adult somatic cells by pro-  printed  acrylated  peptides and  PEG hydrogel  with hu-
                 tein-based reprogramming without genetic manipulation.   man mesenchymal stem cells promote robust bone and
                 Blood, vol.116(3): 386–395.                        cartilage formation  with  minimal printhead clogging.
                 http://dx.doi.org/10.1182/blood-2010-02-269589     Biotechnology Journal, vol.10(10): 1568–1577.
              110.  Peerani R, Rao B  M, Bauwens C,  et al., 2007,   http://dx.doi.org/10.1002/biot.201400635
                 Niche-mediated control of human embryonic stem cell   121.  Holmes B and Zhang L G, 2013, Enhanced human bone
                 self-renewal and differentiation.  The  EMBO Journal,   marrow mesenchymal  stem cell functions in 3D bio-
                 vol.26: 4744–4755.                                 printed  biologically  inspired  osteochondral  construct.
                 http://dx.doi.org/10.1038/sj.emboj.7601896         The American Society of Chemical Engineers Proceed-
              111.  Park J, Cho C H, Parashurama N, et al., 2007, Microfa-  ings, vol.3A: V03AT03A002.
                 brication-based modulation of embryonic stem cell dif-  http://dx.doi.org/10.1115/IMECE2013-66118
                 ferentiation. Lab on a Chip, vol.7(8):1018–1028.   122.  Lee V, Singh G, Tarasatti J P, et al., 2014, Design and
                 http://dx.doi.org/10.1039/B704739H                 fabrication of human skin by three-dimensional bio-
              112.  Raof NA, Schiele N R, Xie Y, et al., 2011, The main-  printing. Tissue Engineering Part C: Methods, vol.20(6):
                 tenance  of pluripotency following  laser  direct-write  of   473–484.
                 mouse embryonic  stem cells.  Biomaterials, vol.32(7):   http://dx.doi.org/10.1089/ten.TEC.2013.0335
                 1802–1808.                                     123.  Censi R, Schuurman W, Malda J, et al., 2011, A printa-
                 http://dx.doi.org/10.1016/j.biomaterials.2010.11.015   ble photopolymerizable thermosensitive p(HPMAm-lac-
              113.  Gruene  M,  Deiwick A, Koch  L,  et al., 2011, Laser   tate)-PEG hydrogel for tissue engineering.  Advanced
                 printing of stem cells for biofabrication of scaffold-free   Functional Materials, vol.21(10): 1833–1842.
                 autologous grafts. Tissue Engineering Part C: Methods,   http://dx.doi.org/10.1002/adfm.201002428
                 vol.17(1): 79–87.                              124.  Jackson N and Stam F, 2015, Optimization of electrical
                 http://dx.doi.org/10.1089/ten.tec.2010.0359        stimulation parameters for electro-responsive hydrogels
              114.  Le Visage C, Dunham B, Flint P, et al., 2004, Coculture   for biomedical applications. Journal of Applied Polymer
                 of mesenchymal stem  cells and  respiratory  epithelial   Science, vol.132(12): 41687(1–8).
                 cells to engineer a human composite respiratory mucosa.   http://dx.doi.org/10.1002/app.41687
                 Tissue Engineering, vol.10(9–10): 1426–1435.     125.  Giani G, Fedi S and Barbucci R, 2012, Hybrid magnetic
                 http://dx.doi.org/10.1089/ten.2004.10.1426         hydrogel: A potential system for controlled drug deli-
              115.  Gaebel R, Ma N, Liu J, et al., 2011, Patterning human   very by means of alternating magnetic fields. Polymers,
                 stem cells and  endothelial cells with  laser printing  for   vol.4(2): 1157–1169.
                 cardiac regeneration.  Biomaterials, vol.32(35):  9218–   http://dx.doi.org/10.3390/polym4021157
                 9230.                                          126.  Pati F, Jang J, Ha D-H, et al., 2014, Printing three-di-
                 http://dx.doi.org/10.1016/j.biomaterials.2011.08.071   mensional tissue analogues with decellularized  extra-
              116.  Teoh G Z, Crowley C, Birchall M A, et al., 2015, De-  cellular matrix  bioink.  Nature Communications, vol.5:
                 velopment of resorbable nanocomposite tracheal and   Article Number 3935.
                 bronchial  scaffolds for paediatric applications.  British   http://dx.doi.org/10.1038/ncomms4935

                                        International Journal of Bioprinting (2016)–Volume 2, Issue 1      19
   18   19   20   21   22   23   24   25   26   27   28