Page 23 - IJB-2-1
P. 23
Nazia Mehrban, Gui Zhen Teoh and Martin Anthony Birchall
http://dx.doi.org/10.1016/j.cell.2006.07.024 Journal of Surgery, vol.102(2): e140–e150.
106. Wang A, Tang Z, Park I-H, et al., 2011, Induced pluri- http://dx.doi.org/10.1002/bjs.9700
potent stem cells for neural tissue engineering. Biomate- 117. Wang S, Lee J M, and Yeong W Y, 2015, Smart hydro-
rials, vol.32(22): 5023–502. gels for 3D bioprinting. International Journal of Bio-
http://dx.doi.org/10.1016/j.biomaterials.2011.03.070 printing, vol.1: 3–14.
107. Diekman B O, Christoforou N, Willard V P, et al., 2012, http://dx.doi.org/10.18063/IJB.2015.01.005
Cartilage tissue engineering using differentiated and pu- 118. Seras-Franzoso J, Tsimbouri P M, Burgess K V, et al.,
rified induced pluripotent stem cells. Proceedings of the 2014, Topographically targeted osteogenesis of mesen-
National Academy of Sciences of the United States of chymal stem cells stimulated by inclusion bodies at-
America, vol.109: 19172–19177. tached to polycaprolactone surfaces. Nanomedicine,
http://dx.doi.org/10.1073/pnas.1210422109 vol.9(2): 207–220.
108. De Peppo G M, Marcos-Campos I, Kahler D J, et al., http://dx.doi.org/10.2217/nnm.13.43
Engineering bone tissue substitutes from human induced 119. Gruene M, Pflaum M, Deiwick A, et al., 2011 Adipo-
pluripotent stem cells. Proceedings of the National genic differentiation of laser-printed 3D tissue grafts
Academy of Sciences of the United States of America, consisting of human adipose-derived stem cells. Biofa-
vol.110: 8680–8685. brication, vol.3(1): 015005.
http://dx.doi.org/10.1073/pnas.1301190110 http://dx.doi.org/10.1088/1758-5082/3/1/015005
109. Cho H-J, Lee C-S, Kwon Y-W, et al., 2010, Induction of 120. Gao G, Yonezawa T, Hubbell K, et al., 2015, Inkjet-bio-
pluripotent stem cells from adult somatic cells by pro- printed acrylated peptides and PEG hydrogel with hu-
tein-based reprogramming without genetic manipulation. man mesenchymal stem cells promote robust bone and
Blood, vol.116(3): 386–395. cartilage formation with minimal printhead clogging.
http://dx.doi.org/10.1182/blood-2010-02-269589 Biotechnology Journal, vol.10(10): 1568–1577.
110. Peerani R, Rao B M, Bauwens C, et al., 2007, http://dx.doi.org/10.1002/biot.201400635
Niche-mediated control of human embryonic stem cell 121. Holmes B and Zhang L G, 2013, Enhanced human bone
self-renewal and differentiation. The EMBO Journal, marrow mesenchymal stem cell functions in 3D bio-
vol.26: 4744–4755. printed biologically inspired osteochondral construct.
http://dx.doi.org/10.1038/sj.emboj.7601896 The American Society of Chemical Engineers Proceed-
111. Park J, Cho C H, Parashurama N, et al., 2007, Microfa- ings, vol.3A: V03AT03A002.
brication-based modulation of embryonic stem cell dif- http://dx.doi.org/10.1115/IMECE2013-66118
ferentiation. Lab on a Chip, vol.7(8):1018–1028. 122. Lee V, Singh G, Tarasatti J P, et al., 2014, Design and
http://dx.doi.org/10.1039/B704739H fabrication of human skin by three-dimensional bio-
112. Raof NA, Schiele N R, Xie Y, et al., 2011, The main- printing. Tissue Engineering Part C: Methods, vol.20(6):
tenance of pluripotency following laser direct-write of 473–484.
mouse embryonic stem cells. Biomaterials, vol.32(7): http://dx.doi.org/10.1089/ten.TEC.2013.0335
1802–1808. 123. Censi R, Schuurman W, Malda J, et al., 2011, A printa-
http://dx.doi.org/10.1016/j.biomaterials.2010.11.015 ble photopolymerizable thermosensitive p(HPMAm-lac-
113. Gruene M, Deiwick A, Koch L, et al., 2011, Laser tate)-PEG hydrogel for tissue engineering. Advanced
printing of stem cells for biofabrication of scaffold-free Functional Materials, vol.21(10): 1833–1842.
autologous grafts. Tissue Engineering Part C: Methods, http://dx.doi.org/10.1002/adfm.201002428
vol.17(1): 79–87. 124. Jackson N and Stam F, 2015, Optimization of electrical
http://dx.doi.org/10.1089/ten.tec.2010.0359 stimulation parameters for electro-responsive hydrogels
114. Le Visage C, Dunham B, Flint P, et al., 2004, Coculture for biomedical applications. Journal of Applied Polymer
of mesenchymal stem cells and respiratory epithelial Science, vol.132(12): 41687(1–8).
cells to engineer a human composite respiratory mucosa. http://dx.doi.org/10.1002/app.41687
Tissue Engineering, vol.10(9–10): 1426–1435. 125. Giani G, Fedi S and Barbucci R, 2012, Hybrid magnetic
http://dx.doi.org/10.1089/ten.2004.10.1426 hydrogel: A potential system for controlled drug deli-
115. Gaebel R, Ma N, Liu J, et al., 2011, Patterning human very by means of alternating magnetic fields. Polymers,
stem cells and endothelial cells with laser printing for vol.4(2): 1157–1169.
cardiac regeneration. Biomaterials, vol.32(35): 9218– http://dx.doi.org/10.3390/polym4021157
9230. 126. Pati F, Jang J, Ha D-H, et al., 2014, Printing three-di-
http://dx.doi.org/10.1016/j.biomaterials.2011.08.071 mensional tissue analogues with decellularized extra-
116. Teoh G Z, Crowley C, Birchall M A, et al., 2015, De- cellular matrix bioink. Nature Communications, vol.5:
velopment of resorbable nanocomposite tracheal and Article Number 3935.
bronchial scaffolds for paediatric applications. British http://dx.doi.org/10.1038/ncomms4935
International Journal of Bioprinting (2016)–Volume 2, Issue 1 19

