Page 26 - IJB-2-2
P. 26
3D bioprinting technology for regenerative medicine applications
vol.1: 1–15. materials, vol.98(1): 160–170.
http://dx.doi.org/10.1007/s10439-016-1609-3 http://dx.doi.org/10.1002/jbm.b.31831
7. Hendow E K, Guhmann P, Wright B, et al., 2016, Bio- 18. Smith C M, Stone A L, Parkhill R L, et al., 2004,
materials for hollow organ tissue engineering. Fibro- Three-dimensional bioassembly tool for generating
genesis & Tissue Repair, vol.9(1): 1–7. viable tissue-engineered constructs. Tissue Engineering,
http://dx.doi.org/10.1186/s13069-016-0040-6 vol.10(9–10): 1566–1576.
8. Varner V D and Nelson C M, 2014, Toward the directed http://dx.doi.org/10.1089/ten.2004.10.1566
self-assembly of engineered tissues. Annual Review of 19. Murphy S V and Atala A, 2014, 3D bioprinting of
Chemical and Biomolecular Engineering, vol.5(1): tissues and organs. Nature Biotechnology, vol.32(8):
507–526. 773–785.
http://dx.doi.org/10.1146/annurev-chembioeng-060713- http://dx.doi.org/10.1038/nbt.2958
040016 20. Chang C C, Boland E D, Williams S K, et al., 2011,
9. Kundu J, Shim J H, Jang J, et al., 2015, An additive Direct-write bioprinting three-dimensional biohybrid
manufacturing-based PCL–alginate–chondrocyte biopr- systems for future regenerative therapies. Journal of
inted scaffold for cartilage tissue engineering. Journal Biomedical Materials Research Part B: Applied
of Tissue Engineering and Regenerative Medicine, Biomaterials, vol.98B(1): 160–170.
vol.9(11): 1286–1297. http://dx.doi.org/10.1002/jbm.b.31831
http://dx.doi.org/10.1002/term.1682 21. Ozbolat I T and Hospodiuk M, 2016, Current advances
10. Sundaramurthi D, Krishnan U M and Sethuraman S, and future perspectives in extrusion-based bioprinting.
2014, Electrospun nanofibers as scaffolds for skin tissue Biomaterials, vol.76: 321–343.
engineering. Polymer Reviews. vol.54(2): 348–376. http://dx.doi.org/10.1016/j.biomaterials.2015.10.076
http://dx.doi.org/10.1080/15583724.2014.881374 22. Cui X, Boland T, D’Lima D D, et al., 2012, Thermal
11. Seol Y J, Kang T Y and Cho D W, 2012, Solid freeform inkjet printing in tissue engineering and regenerative
fabrication technology applied to tissue engineering medicine. Recent Patents on Drug Delivery & For-
with various biomaterials. Soft Matter, vol.8(6): 1730– mulation, vol.6(2): 149–155.
1735. http://dx.doi.org/10.2174/187221112800672949
http://dx.doi.org/10.1039/C1SM06863F 23. Catros S, Fricain J C, Guillotin B, et al., 2011, Laser-
12. Lee J W, 2015, 3D nanoprinting technologies for tissue assisted bioprinting for creating on-demand patterns of
engineering applications. Journal of Nanomaterials, human osteoprogenitor cells and nano-hydroxyapatite.
vol.2015(213521): 1–14. Biofabrication, vol.3(2): 025001.
http://dx.doi.org/10.1155/2015/213521 http://dx.doi.org/10.1088/1758-5082/3/2/025001
13. Thavornyutikarn B, Chantarapanich N, Sitthiseripratip 24. Kim J D, Choi J S, Kim B S, et al., 2010, Piezoelectric
K, et al., 2014, Bone tissue engineering scaffolding: com- inkjet printing of polymers: stem cell patterning on
puter-aided scaffolding techniques. Progress in Bio- polymer substrates. Polymer, vol.51(10): 2147–2154.
materials, vol.3(2–4): 61–102. http://dx.doi.org/10.1016/j.polymer.2010.03.038
http://dx.doi.org/10.1007/s40204-014-0026-7 25. Duan B, 2016, State-of-the-art review of 3D bioprinting
14. Ma X, Qu X, Zhu W, et al., 2016, Deterministically patt- for cardiovascular tissue engineering. Annals of Biom-
erned biomimetic human iPSC-derived hepatic model edical Engineering, vol.1: 1–15.
via rapid 3D bioprinting. Proceedings of the National http://dx.doi.org/10.1007/s10439-016-1607-5
Academy of Sciences, vol.113(8): 2206–2211. 26. Dababneh A B and Ozbolat I T, 2014, Bioprinting
http://dx.doi.org/10.1073/pnas.1524510113 technology: a current state-of-the-art review. Journal of
15. Ahu A Y, Rami El A, Pu C, et al., 2016, Towards Manufacturing Science and Engineering, vol.136(6):
artificial tissue models: past, present, and future of 3D 061016.
bioprinting. Biofabrication, vol.8(1): 014103.] http://dx.doi.org/10.1115/1.4028512
http://dx.doi.org/10.1088/1758-5090/8/1/014103 27. Wüst S, Müller R and Hofmann S, 2011, Controlled
16. Hyungseok L, James J Y, Hyun Wook K, et al., 2016, positioning of cells in biomaterials — approaches tow-
Investigation of thermal degradation with extrusion- ards 3D tissue printing. Journal of Functional Biomat-
based dispensing modules for 3D bioprinting techn- erials, vol.2(3): 119–154.
ology. Biofabrication, vol.8(1): 015011. http://dx.doi.org/10.3390/jfb2030119
http://dx.doi.org/10.1088/1758-5090/8/1/015011 28. Khalil S, Nam J and Sun W, 2015, Multi-nozzle
17. Chang C C, Boland E D, Williams S K, et al., 2011, deposition for construction of 3D biopolymer tissue
Direct‐write bioprinting three‐dimensional biohybrid scaffolds. Rapid Prototyping Journal, vol.11(1): 9–17.
systems for future regenerative therapies. Journal of http://dx.doi.org/10.1108/13552540510573347
Biomedical Materials Research Part B: Applied Bio- 29. Jose R R, Rodriguez M J, Dixon T A, et al., 2016,
22 International Journal of Bioprinting (2016)–Volume 2, Issue 2

