Page 26 - IJB-2-2
P. 26

3D bioprinting technology for regenerative medicine applications

                  vol.1: 1–15.                                      materials, vol.98(1): 160–170.
                  http://dx.doi.org/10.1007/s10439-016-1609-3       http://dx.doi.org/10.1002/jbm.b.31831
              7.   Hendow E K, Guhmann P, Wright B, et al., 2016, Bio-  18.  Smith  C M, Stone A  L, Parkhill R L,  et al.,  2004,
                  materials for hollow organ tissue engineering.  Fibro-  Three-dimensional bioassembly  tool for generating
                  genesis & Tissue Repair, vol.9(1): 1–7.           viable tissue-engineered constructs. Tissue Engineering,
                  http://dx.doi.org/10.1186/s13069-016-0040-6       vol.10(9–10): 1566–1576.
              8.   Varner V D and Nelson C M, 2014, Toward the directed   http://dx.doi.org/10.1089/ten.2004.10.1566
                  self-assembly of  engineered  tissues. Annual Review of   19.  Murphy S V and Atala A, 2014, 3D bioprinting of
                  Chemical and Biomolecular Engineering,  vol.5(1):   tissues and organs.  Nature Biotechnology,  vol.32(8):
                  507–526.                                          773–785.
                  http://dx.doi.org/10.1146/annurev-chembioeng-060713-  http://dx.doi.org/10.1038/nbt.2958
                  040016                                        20.  Chang C C, Boland  E D, Williams S K,  et al.,  2011,
              9.   Kundu J, Shim J H, Jang J,  et al.,  2015,  An additive   Direct-write bioprinting three-dimensional biohybrid
                  manufacturing-based PCL–alginate–chondrocyte biopr-  systems for future regenerative therapies.  Journal of
                  inted  scaffold for cartilage tissue engineering. Journal   Biomedical Materials  Research Part B: Applied
                  of Tissue Engineering and Regenerative Medicine,   Biomaterials, vol.98B(1): 160–170.
                  vol.9(11): 1286–1297.                             http://dx.doi.org/10.1002/jbm.b.31831
                  http://dx.doi.org/10.1002/term.1682           21.  Ozbolat I T and Hospodiuk M, 2016, Current advances
              10.  Sundaramurthi  D, Krishnan U  M and Sethuraman S,   and future perspectives in extrusion-based  bioprinting.
                  2014, Electrospun nanofibers as scaffolds for skin tissue   Biomaterials, vol.76: 321–343.
                  engineering. Polymer Reviews. vol.54(2): 348–376.   http://dx.doi.org/10.1016/j.biomaterials.2015.10.076
                  http://dx.doi.org/10.1080/15583724.2014.881374   22.  Cui X, Boland  T, D’Lima D D, et al.,  2012, Thermal
              11.  Seol Y J, Kang T Y and Cho D W, 2012, Solid freeform   inkjet printing in tissue engineering and regenerative
                  fabrication technology applied  to  tissue engineering   medicine.  Recent Patents on  Drug  Delivery  &  For-
                  with various biomaterials. Soft Matter, vol.8(6): 1730–   mulation, vol.6(2): 149–155.
                  1735.                                             http://dx.doi.org/10.2174/187221112800672949
                  http://dx.doi.org/10.1039/C1SM06863F          23.  Catros S, Fricain J C, Guillotin B, et al., 2011, Laser-
              12.  Lee J W, 2015, 3D nanoprinting technologies for tissue   assisted bioprinting for creating on-demand patterns of
                  engineering applications.  Journal of Nanomaterials,   human osteoprogenitor cells  and nano-hydroxyapatite.
                  vol.2015(213521): 1–14.                           Biofabrication, vol.3(2): 025001.
                  http://dx.doi.org/10.1155/2015/213521             http://dx.doi.org/10.1088/1758-5082/3/2/025001
              13.  Thavornyutikarn B, Chantarapanich N, Sitthiseripratip   24.  Kim J D, Choi J S, Kim B S, et al., 2010, Piezoelectric
                  K, et al., 2014, Bone tissue engineering scaffolding: com-  inkjet printing  of polymers: stem cell patterning on
                  puter-aided scaffolding techniques.  Progress in Bio-  polymer substrates. Polymer, vol.51(10): 2147–2154.
                  materials, vol.3(2–4): 61–102.                    http://dx.doi.org/10.1016/j.polymer.2010.03.038
                  http://dx.doi.org/10.1007/s40204-014-0026-7   25.  Duan B, 2016, State-of-the-art review of 3D bioprinting
              14.  Ma X, Qu X, Zhu W, et al., 2016, Deterministically patt-  for cardiovascular tissue engineering. Annals of Biom-
                 erned biomimetic human iPSC-derived hepatic model   edical Engineering, vol.1: 1–15.
                 via rapid 3D bioprinting.  Proceedings of the National   http://dx.doi.org/10.1007/s10439-016-1607-5
                 Academy of Sciences, vol.113(8): 2206–2211.    26.  Dababneh A B and Ozbolat I T, 2014, Bioprinting
                 http://dx.doi.org/10.1073/pnas.1524510113          technology: a current state-of-the-art review. Journal of
              15.  Ahu A Y, Rami El A, Pu C,  et al.,  2016, Towards   Manufacturing Science  and Engineering,  vol.136(6):
                  artificial tissue models: past, present, and future of 3D   061016.
                  bioprinting. Biofabrication, vol.8(1): 014103.]   http://dx.doi.org/10.1115/1.4028512
                  http://dx.doi.org/10.1088/1758-5090/8/1/014103   27.  Wüst S, Müller R and Hofmann S, 2011, Controlled
              16.  Hyungseok L, James J Y, Hyun Wook K, et al., 2016,   positioning of cells in biomaterials — approaches tow-
                  Investigation of thermal degradation with  extrusion-   ards 3D tissue printing. Journal of Functional Biomat-
                  based dispensing modules for  3D bioprinting  techn-  erials, vol.2(3): 119–154.
                  ology. Biofabrication, vol.8(1): 015011.          http://dx.doi.org/10.3390/jfb2030119
                  http://dx.doi.org/10.1088/1758-5090/8/1/015011   28.  Khalil S, Nam J  and Sun  W, 2015,  Multi-nozzle
              17.  Chang C  C, Boland  E D, Williams S K,  et al.,  2011,   deposition for  construction of 3D biopolymer tissue
                  Direct‐write bioprinting three‐dimensional biohybrid   scaffolds. Rapid Prototyping Journal, vol.11(1): 9–17.
                  systems for future regenerative therapies.  Journal of   http://dx.doi.org/10.1108/13552540510573347
                  Biomedical Materials Research Part B: Applied Bio-  29.  Jose R R, Rodriguez M J, Dixon T A,  et al.,  2016,

            22                          International Journal of Bioprinting (2016)–Volume 2, Issue 2
   21   22   23   24   25   26   27   28   29   30   31