Page 27 - IJB-2-2
P. 27
Dhakshinamoorthy Sundaramurthi, Sakandar Rauf and Charlotte A. E. Hauser
Evolution of bioinks and additive manufacturing tech- erials Research Part A, vol.101(5): 1255–1264.
nologies for 3D bioprinting. ACS Biomaterials Science http://dx.doi.org/10.1002/jbm.a.34420
& Engineering. 41. Knowlton S, Onal S, Yu C H, et al., 2015, Bioprinting
http://dx.doi.org/10.1021/acsbiomaterials.6b00088 for cancer research. Trends in Biotechnology, vol.33(9):
30. Campbell P G, Miller E D, Fisher G W, et al., 2005, 504–513.
Engineered spatial patterns of FGF-2 immobilized on http://dx.doi.org/10.1016/j.tibtech.2015.06.007
fibrin direct cell organization. Biomaterials, vol.26(33): 42. Skardal A, Zhang J and Prestwich G D, 2010, Biop-
6762–6770. rinting vessel-like constructs using hyaluronan hydro-
http://dx.doi.org/10.1016/j.biomaterials.2005.04.032 gels crosslinked with tetrahedral polyethylene glycol
31. Duarte Campos D F, Blaeser A, Buellesbach K, et al., tetracrylates. Biomaterials, vol.31(24): 6173–6181.
2016, Bioprinting organotypic hydrogels with improved http://dx.doi.org/10.1016/j.biomaterials.2010.04.045
mesenchymal stem cell remodeling and mineralization 43. Mohebi M M and Evans J R, 2002, A drop-on-demand
properties for bone tissue engineering. Advanced ink-jet printer for combinatorial libraries and functi-
Healthcare Materials, vol.5(11): 1336–1345. onally graded ceramics. Journal of Combinatorial Che-
http://dx.doi.org/10.1002/adhm.201501033 mistry, vol.4(4): 267–274.
32. Sobral J M, Caridade S G, Sousa R A, et al., 2011, Three- http://dx.doi.org/10.1021/cc010075e
dimensional plotted scaffolds with controlled pore size 44. Wilson W C and Boland T, 2003, Cell and organ prin-
gradients: effect of scaffold geometry on mechanical ting 1: protein and cell printers. The Anatomical Record
performance and cell seeding efficiency. Acta Bio- Part A: Discoveries in Molecular, Cellular, and Evolu-
materialia, vol.7(3): 1009–1018. tionary Biology, vol.272A(2): 491–496.
http://dx.doi.org/10.1016/j.actbio.2010.11.003 http://dx.doi.org/10.1002/ar.a.10057
33. Mironov V, Visconti R P, Kasyanov V, et al., 2009, 45. Gao G, Yonezawa T and Hubbell K, 2015, Inkjet-
Organ printing: tissue spheroids as building blocks. Bio- bioprinted acrylated peptides and PEG hydrogel with
materials, vol.30(12): 2164–2174. human mesenchymal stem cells promote robust bone
http://dx.doi.org/10.1016/j.biomaterials.2008.12.084 and cartilage formation with minimal printhead clo-
34. Zhang X and Zhang Y, 2015, Tissue engineering gging. Biotechnology Journal, vol.10(10): 1568–1577.
applications of three-dimensional bioprinting. Cell Bio- http://dx.doi.org/10.1002/biot.201400635
chemistry and Biophysics, vol.72(3): 777–782. 46. Pervan D and Pervan T, 2014, Digital printing with
http://dx.doi.org/10.1007/s12013-015-0531-x transparent blank ink: Google Patents, WO2014109702.
35. Peltola S M, Melchels F P, Grijpma D W, et al., 2008, A 47. Tekin E, Smith P J and Schubert U S, 2008, Inkjet
review of rapid prototyping techniques for tissue eng- printing as a deposition and patterning tool for polymers
ineering purposes. Annals of Medicine, vol.40(4): and inorganic particles. Soft Matter, vol.4(4): 703–713.
268–280. http://dx.doi.org/10.1039/b711984d
http://dx.doi.org/10.1080/07853890701881788 48. Cui X, Dean D, Ruggeri Z M, et al., 2010, Cell damage
36. Khalil S, Nam J and Sun W, 2005, Multinozzle dep- evaluation of thermal inkjet printed Chinese hamster
osition for construction of 3D biopolymer tissue scaff- ovary cells. Biotechnology and Bioengineering,
olds. Rapid Prototyping Journal, vol.11(1): 9–17. vol.106(6): 963–969.
http://dx.doi.org/10.1108/13552540510573347 http://dx.doi.org/10.1002/bit.22762
37. Khalil S and Sun W, 2007, Biopolymer deposition for 49. Demirci U and Montesano G, 2007, Single cell epitaxy
freeform fabrication of hydrogel tissue constructs. Mater- by acoustic picolitre droplets. Lab on a Chip, vol.7(9):
ials Science and Engineering: C, vol.27(3): 469–478. 1139–1145.
http://dx.doi.org/10.1016/j.msec.2006.05.023 http://dx.doi.org/10.1039/b704965j
38. Yu Z, Yang L, Shuangshuang M, et al., 2015, The 50. Cui X, Boland T and D’Lima D D, 2012, Thermal inkjet
influence of printing parameters on cell survival rate printing in tissue engineering and regenerative medicine.
and printability in microextrusion-based 3D cell Recent Patents on Drug Delivery and Formulation,
printing technology. Biofabrication, vol.7(4): 045002. vol.6(2): 149–155.
http://dx.doi.org/10.1088/1758-5090/7/4/045002 http://dx.doi.org/10.2174/187221112800672949
39. Jungst T, Smolan W, Schacht K, et al., 2015, Strategies 51. Hudson K R, Cowan P B and Gondek J S, 2000, Ink
and molecular design criteria for 3D printable hydrogels. drop volume variance compensation for inkjet printing,
Chemical Reviews, vol.116(3): 1496–1539. Google Patents, US6042211A.
http://dx.doi.org/10.1021/acs.chemrev.5b00303 52. De Gans B J and Schubert U S, 2004, Inkjet printing of
40. Duan B, Hockaday L A, Kang K H, et al., 2013, 3D well-defined polymer dots and arrays. Langmuir,
bioprinting of heterogeneous aortic valve conduits with vol.20(18): 7789–7793.
alginate/gelatin hydrogels. Journal of Biomedical Mat- http://dx.doi.org/10.1021/la049469o
International Journal of Bioprinting (2016)–Volume 2, Issue 2 23

