Page 27 - IJB-2-2
P. 27

Dhakshinamoorthy Sundaramurthi, Sakandar Rauf and Charlotte A. E. Hauser

                  Evolution of bioinks and additive manufacturing  tech-  erials Research Part A, vol.101(5): 1255–1264.
                  nologies for 3D bioprinting. ACS Biomaterials Science   http://dx.doi.org/10.1002/jbm.a.34420
                  & Engineering.                                41.  Knowlton S, Onal S, Yu C H, et al., 2015, Bioprinting
                  http://dx.doi.org/10.1021/acsbiomaterials.6b00088   for cancer research. Trends in Biotechnology, vol.33(9):
              30.  Campbell P G,  Miller E D, Fisher G W,  et al.,  2005,   504–513.
                  Engineered spatial patterns of  FGF-2 immobilized on   http://dx.doi.org/10.1016/j.tibtech.2015.06.007
                  fibrin direct cell organization. Biomaterials, vol.26(33):   42.  Skardal A, Zhang J and Prestwich G D, 2010, Biop-
                  6762–6770.                                        rinting vessel-like constructs  using  hyaluronan hydro-
                  http://dx.doi.org/10.1016/j.biomaterials.2005.04.032   gels crosslinked with  tetrahedral  polyethylene glycol
              31.  Duarte Campos D F, Blaeser A, Buellesbach K, et al.,   tetracrylates. Biomaterials, vol.31(24): 6173–6181.
                  2016, Bioprinting organotypic hydrogels with improved   http://dx.doi.org/10.1016/j.biomaterials.2010.04.045
                  mesenchymal stem cell remodeling and mineralization   43.  Mohebi M M and Evans J R, 2002, A drop-on-demand
                  properties  for  bone tissue engineering.  Advanced   ink-jet printer  for combinatorial libraries and  functi-
                  Healthcare Materials, vol.5(11): 1336–1345.       onally graded ceramics. Journal of Combinatorial Che-
                  http://dx.doi.org/10.1002/adhm.201501033          mistry, vol.4(4): 267–274.
              32.  Sobral J M, Caridade S G, Sousa R A, et al., 2011, Three-   http://dx.doi.org/10.1021/cc010075e
                  dimensional plotted scaffolds with controlled pore size   44.  Wilson W C and Boland T, 2003, Cell and organ prin-
                  gradients:  effect of scaffold geometry on mechanical   ting 1: protein and cell printers. The Anatomical Record
                  performance and cell seeding efficiency.  Acta  Bio-  Part A: Discoveries in Molecular, Cellular, and Evolu-
                  materialia, vol.7(3): 1009–1018.                  tionary Biology, vol.272A(2): 491–496.
                  http://dx.doi.org/10.1016/j.actbio.2010.11.003    http://dx.doi.org/10.1002/ar.a.10057
              33.  Mironov V, Visconti R  P, Kasyanov V,  et al.,  2009,   45.  Gao  G, Yonezawa T  and Hubbell K, 2015, Inkjet-
                  Organ printing: tissue spheroids as building blocks. Bio-  bioprinted acrylated peptides and PEG hydrogel with
                  materials, vol.30(12): 2164–2174.                 human mesenchymal stem cells promote robust bone
                  http://dx.doi.org/10.1016/j.biomaterials.2008.12.084   and cartilage  formation  with minimal  printhead clo-
              34.  Zhang X and Zhang Y, 2015, Tissue engineering    gging. Biotechnology Journal, vol.10(10): 1568–1577.
                  applications of three-dimensional bioprinting. Cell Bio-  http://dx.doi.org/10.1002/biot.201400635
                  chemistry and Biophysics, vol.72(3): 777–782.   46.  Pervan D and  Pervan  T, 2014, Digital printing with
                  http://dx.doi.org/10.1007/s12013-015-0531-x       transparent blank ink: Google Patents, WO2014109702.
              35.  Peltola S M, Melchels F P, Grijpma D W, et al., 2008, A   47.  Tekin E, Smith P J and Schubert U S, 2008,  Inkjet
                  review of rapid prototyping techniques for tissue eng-  printing as a deposition and patterning tool for polymers
                  ineering purposes.  Annals of Medicine,  vol.40(4):   and inorganic particles. Soft Matter, vol.4(4): 703–713.
                  268–280.                                          http://dx.doi.org/10.1039/b711984d
                  http://dx.doi.org/10.1080/07853890701881788   48.  Cui X, Dean D, Ruggeri Z M, et al., 2010, Cell damage
              36.  Khalil S, Nam  J and Sun W, 2005,  Multinozzle dep-  evaluation of thermal  inkjet printed Chinese hamster
                  osition for construction of 3D biopolymer tissue scaff-  ovary cells.  Biotechnology and Bioengineering,
                  olds. Rapid Prototyping Journal, vol.11(1): 9–17.   vol.106(6): 963–969.
                  http://dx.doi.org/10.1108/13552540510573347       http://dx.doi.org/10.1002/bit.22762
              37.  Khalil S and Sun W, 2007, Biopolymer deposition for   49.  Demirci U and Montesano G, 2007, Single cell epitaxy
                  freeform fabrication of hydrogel tissue constructs. Mater-  by acoustic picolitre droplets. Lab on a Chip, vol.7(9):
                  ials Science and Engineering: C, vol.27(3): 469–478.   1139–1145.
                  http://dx.doi.org/10.1016/j.msec.2006.05.023      http://dx.doi.org/10.1039/b704965j
              38.  Yu Z, Yang L, Shuangshuang M,  et al.,  2015, The   50.  Cui X, Boland T and D’Lima D D, 2012, Thermal inkjet
                  influence of printing parameters on cell survival rate   printing in tissue engineering and regenerative medicine.
                  and printability in microextrusion-based  3D cell   Recent Patents on  Drug  Delivery and  Formulation,
                  printing technology. Biofabrication, vol.7(4): 045002.   vol.6(2): 149–155.
                  http://dx.doi.org/10.1088/1758-5090/7/4/045002    http://dx.doi.org/10.2174/187221112800672949
              39.  Jungst T, Smolan W, Schacht K, et al., 2015, Strategies   51.  Hudson K R, Cowan P  B and Gondek J S, 2000, Ink
                  and molecular design criteria for 3D printable hydrogels.   drop volume variance compensation for inkjet printing,
                  Chemical Reviews, vol.116(3): 1496–1539.          Google Patents, US6042211A.
                  http://dx.doi.org/10.1021/acs.chemrev.5b00303   52.  De Gans B J and Schubert U S, 2004, Inkjet printing of
              40.  Duan B, Hockaday L A, Kang  K H,  et al.,  2013, 3D   well-defined polymer dots and arrays.  Langmuir,
                  bioprinting of heterogeneous aortic valve conduits with   vol.20(18): 7789–7793.
                  alginate/gelatin hydrogels. Journal of Biomedical Mat-  http://dx.doi.org/10.1021/la049469o

                                        International Journal of Bioprinting (2016)–Volume 2, Issue 2      23
   22   23   24   25   26   27   28   29   30   31   32