Page 28 - IJB-2-2
P. 28

3D bioprinting technology for regenerative medicine applications

              53.  Cui X  and Boland  T, 2009, Human microvasculature   64.  Lozano R, Stevens L, Thompson B C, et al., 2015, 3D
                  fabrication using thermal  inkjet printing technology.   printing of  layered brain-like structures using peptide
                  Biomaterials, vol.30(31): 6221–6227.              modified gellan gum substrates.  Biomaterials,  vol.67:
                  http://dx.doi.org/10.1016/j.biomaterials.2009.07.056   264–273.
              54.  Guillotin B, Catros S and Guillemot F, 2013, Laser   http://dx.doi.org/10.1016/j.biomaterials.2015.07.022
                  assisted  bio-printing (LAB) of cells and biomaterials   65.  Gaetani R, Doevendans P A, Metz C H G, et al., 2012,
                  based on laser induced forward transfer (LIFT),  in   Cardiac tissue engineering using tissue printing tech-
                  Schmidt V, Belegratis M R, (eds) Laser Technology in   nology and human cardiac progenitor cells.  Biomat-
                  Biomimetics, Springer, Berlin Heidelberg, 193–209.   erials, vol.33(6): 1782–1790.
                  http://dx.doi.org/10.1007/978-3-642-41341-4_8     http://dx.doi.org/10.1016/j.biomaterials.2011.11.003
              55.  Guillotin B, Souquet A, Catros S,  et al.,  2010, Laser   66.  Gao G and Cui X, 2015, Three-dimensional bioprinting
                  assisted bioprinting of engineered tissue with high cell   in tissue engineering and regenerative medicine. Biote-
                  density  and microscale organization.  Biomaterials,   chnology Letters, vol.38(2): 203–211.
                  vol.31(28): 7250–7256.                            http://dx.doi.org/10.1007/s10529-015-1975-1
                  http://dx.doi.org/10.1016/j.biomaterials.2010.05.055   67.  Skardal A, Mack  D, Kapetanovic E,  et al.,  2012,
              56.  Koch L, Gruene M, Unger C,  et al.,  2013, Laser   Bioprinted amniotic fluid-derived stem cells accelerate
                  assisted cell printing. Current Pharmaceutical Biotech-  healing of large skin wounds. Stem Cells Translational
                  nology, vol.14(1): 91–97.                         Medicine, vol.1(11): 792–802.
                  http://dx.doi.org/10.2174/1389201011314010012     http://dx.doi.org/10.5966/sctm.2012-0088
              57.  Larson C and Shepherd R, 2016, 3D bioprinting tech-  68.  Cui X, Breitenkamp K, Finn M G, et al., 2012, Direct
                  nologies for cellular engineering, in Singh A, Gaharwar   human cartilage repair using three-dimensional bioprin-
                  K A, (eds) Microscale Technologies for Cell Enginee-  ting technology. Tissue Engineering. Part A. vol.18(11–12):
                  ring, Cham: Springer International Publishing, UK, 69–89.   1304–1312.
                  http://dx.doi.org/10.1007/978-3-319-20726-1_4     http://dx.doi.org/10.1089/ten.tea.2011.0543
              58.  Ng W L, Yeong W Y and Naing M W, 2016, Poly-  69.  Kang  HW,  Lee  S J, Ko  I K,  et al.,  2016, A 3D bio-
                  electrolyte gelatin-chitosan hydrogel optimized  for 3D   printing system to produce human-scale tissue  con-
                  bioprinting  in skin  tissue engineering.  International   structs with structural integrity.  Nature Biotechnology,
                  Journal of Bioprinting, vol.2(1): 1–10.           vol.34: 312–319.
                  http://dx.doi.org/10.18063/ijb.2016.01.009        http://dx.doi.org/10.1038/nbt.3413
              59.  Zhu W, Ma X, Gou M,  et al.,  2016, 3D printing of   70.  Mironov V, Kasyanov V and  Markwald R R, 2011,
                  functional biomaterials for tissue engineering.  Current   Organ printing: from bioprinter to organ biofabrication
                  Opinion in Biotechnology, vol.40: 103–112.        line. Current Opinion in Biotechnology, vol.22(5): 667–
                  http://dx.doi.org/10.1016/j.copbio.2016.03.014    673.
              60.  Guillotin B, Souquet A, Catros S,  et al.,  2010, Laser   http://dx.doi.org/10.1016/j.copbio.2011.02.006
                  assisted bioprinting of engineered tissue with high cell   71.  Williams S K,  Touroo J S, Church K H,  et al.,  2013,
                  density  and microscale organization.  Biomaterials,   Encapsulation of adipose stromal vascular fraction cells
                  vol.31(28): 7250–7256.                            in alginate hydrogel spheroids using a direct-write
                  http://dx.doi.org/10.1016/j.biomaterials.2010.05.055   three-dimensional printing system.  BioResearch Open
              61.  Pagès E, Rémy M, Kériquel V, et al., 2015, Creation of   Access, vol.2(6): 448–454.
                  highly defined mesenchymal stem cell patterns in three   http://dx.doi.org/10.1089/biores.2013.0046
                  dimensions  by laser-assisted bioprinting.  Journal of   72.  Loo Y, Lakshmanan A, Ni M,  et al.,  2015, Peptide
                  Nanotechnology in Engineering and Medicine, vol.6(2):   bioink: self-assembling nanofibrous scaffolds for three-
                  0210061–0210065.                                  dimensional organotypic cultures.  Nano Letters,
                  http://dx.doi.org/10.1115/1.4031217               vol.15(10): 6919–6925.
              62.  Michael S, Sorg  H, Peck  C  T,  et al.,  2013, Tissue   http://dx.doi.org/10.1021/acs.nanolett.5b02859
                  engineered skin substitutes created by  laser-assisted   73.  Talbot E, Berson A, Brown P, et al., 2012, Evaporation
                  bioprinting form skin-like structures in the dorsal skin   of picoliter droplets on surfaces with a range of wetta-
                  fold chamber in mice. Plos One, vol.8(3): e57741.   bilities and thermal conductivities. Physical Review E,
                  http://dx.doi.org/10.1371/journal.pone.0057741    vol.85(6): 061604.
              63.  Kesti M, Eberhardt C, Pagliccia G,  et al.,  2015, Bio-  http://dx.doi.org/10.1103/PhysRevE.85.061604
                  printing complex cartilaginous structures with clinically   74.  Williams D F, 2008, On  the mechanisms of biocomp-
                  compliant biomaterials. Advanced Functional Materials,   atibility. Biomaterials, vol.29(20): 2941–2953.
                  vol.25: 7406–7416.                                http://dx.doi.org/10.1016/j.biomaterials.2008.04.023
                  http://dx.doi.org/10.1002/adfm.201503423      75.  West J L and Hubbell J A, 1999, Polymeric biomaterials

            24                          International Journal of Bioprinting (2016)–Volume 2, Issue 2
   23   24   25   26   27   28   29   30   31   32   33