Page 28 - IJB-2-2
P. 28
3D bioprinting technology for regenerative medicine applications
53. Cui X and Boland T, 2009, Human microvasculature 64. Lozano R, Stevens L, Thompson B C, et al., 2015, 3D
fabrication using thermal inkjet printing technology. printing of layered brain-like structures using peptide
Biomaterials, vol.30(31): 6221–6227. modified gellan gum substrates. Biomaterials, vol.67:
http://dx.doi.org/10.1016/j.biomaterials.2009.07.056 264–273.
54. Guillotin B, Catros S and Guillemot F, 2013, Laser http://dx.doi.org/10.1016/j.biomaterials.2015.07.022
assisted bio-printing (LAB) of cells and biomaterials 65. Gaetani R, Doevendans P A, Metz C H G, et al., 2012,
based on laser induced forward transfer (LIFT), in Cardiac tissue engineering using tissue printing tech-
Schmidt V, Belegratis M R, (eds) Laser Technology in nology and human cardiac progenitor cells. Biomat-
Biomimetics, Springer, Berlin Heidelberg, 193–209. erials, vol.33(6): 1782–1790.
http://dx.doi.org/10.1007/978-3-642-41341-4_8 http://dx.doi.org/10.1016/j.biomaterials.2011.11.003
55. Guillotin B, Souquet A, Catros S, et al., 2010, Laser 66. Gao G and Cui X, 2015, Three-dimensional bioprinting
assisted bioprinting of engineered tissue with high cell in tissue engineering and regenerative medicine. Biote-
density and microscale organization. Biomaterials, chnology Letters, vol.38(2): 203–211.
vol.31(28): 7250–7256. http://dx.doi.org/10.1007/s10529-015-1975-1
http://dx.doi.org/10.1016/j.biomaterials.2010.05.055 67. Skardal A, Mack D, Kapetanovic E, et al., 2012,
56. Koch L, Gruene M, Unger C, et al., 2013, Laser Bioprinted amniotic fluid-derived stem cells accelerate
assisted cell printing. Current Pharmaceutical Biotech- healing of large skin wounds. Stem Cells Translational
nology, vol.14(1): 91–97. Medicine, vol.1(11): 792–802.
http://dx.doi.org/10.2174/1389201011314010012 http://dx.doi.org/10.5966/sctm.2012-0088
57. Larson C and Shepherd R, 2016, 3D bioprinting tech- 68. Cui X, Breitenkamp K, Finn M G, et al., 2012, Direct
nologies for cellular engineering, in Singh A, Gaharwar human cartilage repair using three-dimensional bioprin-
K A, (eds) Microscale Technologies for Cell Enginee- ting technology. Tissue Engineering. Part A. vol.18(11–12):
ring, Cham: Springer International Publishing, UK, 69–89. 1304–1312.
http://dx.doi.org/10.1007/978-3-319-20726-1_4 http://dx.doi.org/10.1089/ten.tea.2011.0543
58. Ng W L, Yeong W Y and Naing M W, 2016, Poly- 69. Kang HW, Lee S J, Ko I K, et al., 2016, A 3D bio-
electrolyte gelatin-chitosan hydrogel optimized for 3D printing system to produce human-scale tissue con-
bioprinting in skin tissue engineering. International structs with structural integrity. Nature Biotechnology,
Journal of Bioprinting, vol.2(1): 1–10. vol.34: 312–319.
http://dx.doi.org/10.18063/ijb.2016.01.009 http://dx.doi.org/10.1038/nbt.3413
59. Zhu W, Ma X, Gou M, et al., 2016, 3D printing of 70. Mironov V, Kasyanov V and Markwald R R, 2011,
functional biomaterials for tissue engineering. Current Organ printing: from bioprinter to organ biofabrication
Opinion in Biotechnology, vol.40: 103–112. line. Current Opinion in Biotechnology, vol.22(5): 667–
http://dx.doi.org/10.1016/j.copbio.2016.03.014 673.
60. Guillotin B, Souquet A, Catros S, et al., 2010, Laser http://dx.doi.org/10.1016/j.copbio.2011.02.006
assisted bioprinting of engineered tissue with high cell 71. Williams S K, Touroo J S, Church K H, et al., 2013,
density and microscale organization. Biomaterials, Encapsulation of adipose stromal vascular fraction cells
vol.31(28): 7250–7256. in alginate hydrogel spheroids using a direct-write
http://dx.doi.org/10.1016/j.biomaterials.2010.05.055 three-dimensional printing system. BioResearch Open
61. Pagès E, Rémy M, Kériquel V, et al., 2015, Creation of Access, vol.2(6): 448–454.
highly defined mesenchymal stem cell patterns in three http://dx.doi.org/10.1089/biores.2013.0046
dimensions by laser-assisted bioprinting. Journal of 72. Loo Y, Lakshmanan A, Ni M, et al., 2015, Peptide
Nanotechnology in Engineering and Medicine, vol.6(2): bioink: self-assembling nanofibrous scaffolds for three-
0210061–0210065. dimensional organotypic cultures. Nano Letters,
http://dx.doi.org/10.1115/1.4031217 vol.15(10): 6919–6925.
62. Michael S, Sorg H, Peck C T, et al., 2013, Tissue http://dx.doi.org/10.1021/acs.nanolett.5b02859
engineered skin substitutes created by laser-assisted 73. Talbot E, Berson A, Brown P, et al., 2012, Evaporation
bioprinting form skin-like structures in the dorsal skin of picoliter droplets on surfaces with a range of wetta-
fold chamber in mice. Plos One, vol.8(3): e57741. bilities and thermal conductivities. Physical Review E,
http://dx.doi.org/10.1371/journal.pone.0057741 vol.85(6): 061604.
63. Kesti M, Eberhardt C, Pagliccia G, et al., 2015, Bio- http://dx.doi.org/10.1103/PhysRevE.85.061604
printing complex cartilaginous structures with clinically 74. Williams D F, 2008, On the mechanisms of biocomp-
compliant biomaterials. Advanced Functional Materials, atibility. Biomaterials, vol.29(20): 2941–2953.
vol.25: 7406–7416. http://dx.doi.org/10.1016/j.biomaterials.2008.04.023
http://dx.doi.org/10.1002/adfm.201503423 75. West J L and Hubbell J A, 1999, Polymeric biomaterials
24 International Journal of Bioprinting (2016)–Volume 2, Issue 2

