Page 30 - IJB-2-2
P. 30
3D bioprinting technology for regenerative medicine applications
cleus pulposus tissue regeneration. International Jou- http://dx.doi.org/10.1016/j.biomaterials.2015.08.028
rnal of Molecular Sciences, vol.16(7): 15118–15135. 107. Alan F J, Catherine F, Dirk Jan C, et al., 2015, Biopr-
http://dx.doi.org/10.3390/ijms160715118 inting of human pluripotent stem cells and their directed
97. Holländer J, Genina N, Jukarainen H, et al., 2016, Th- differentiation into hepatocyte-like cells for the gene-
ree-dimensional printed PCL-based implantable pro- ration of mini-livers in 3D. Biofabrication, vol.7(4):
totypes of medical devices for controlled drug delivery. 044102.
Journal of Pharmaceutical Sciences. http://dx.doi.org/10.1088/1758-5090/7/4/044102
http://dx.doi.org/10.1016/j.xphs.2015.12.012 108. Tasoglu S and Demirci U, 2013, Bioprinting for stem cell
98. Loo Y and Hauser C A, 2015, Bioprinting synthetic research. Trends in Biotechnology, vol.31(1): 10–19.
self-assembling peptide hydrogels for biomedical http://dx.doi.org/10.1016/j.tibtech.2012.10.005
applications. Biomedical Materials, vol.11(1): 014103. 109. Liliang O, Rui Y, Shuangshuang M, et al., 2015, Three-
http://dx.doi.org/10.1088/1748-6041/11/1/014103 dimensional bioprinting of embryonic stem cells directs
99. Hauser C A E, Deng R, Mishra A, et al., 2011, Natural tri- highly uniform embryoid body formation. Biofabrica-
to hexapeptides self-assemble in water to amyloid β-type tion, vol.7(4): 044101.
fiber aggregates by unexpected α-helical intermediate http://dx.doi.org/10.1088/1758-5090/7/4/044101
structures. Proceedings of the National Academy of 110. Shanjani Y, Pan C C, Elomaa L, et al., 2015, A novel
Sciences, vol.108(4): 1361–1366. bioprinting method and system for forming hybrid
http://dx.doi.org/10.1073/pnas.1014796108 tissue engineering constructs. Biofabrication, vol.7(4):
100. Mishra A, Loo Y, Deng R, et al., 2011, Ultrasmall 045008.
natural peptides self-assemble to strong temperature- http://dx.doi.org/10.1088/1758-5090/7/4/045008
resistant helical fibers in scaffolds suitable for tissue 111. Mingchun D, Bing C, Qingyuan M, et al., 2015, 3D
engineering. Nano Today, vol.6(3): 232–239. bioprinting of BMSC-laden methacrylamide gelatin
http://dx.doi.org/10.1016/j.nantod.2011.05.001 scaffolds with CBD-BMP2-collagen microfibers. Biofa-
101. Tirella A, Vozzi F, De Maria C, et al., 2011, Substrate brication, vol.7(4): 044104.
stiffness influences high resolution printing of living http://dx.doi.org/10.1088/1758-5090/7/4/044104
cells with an ink-jet system. Journal of Bioscience and 112. Blaeser A, Duarte Campos D F, Puster U, et al., 2015,
Bioengineering, vol.112(1): 79–85. Controlling shear stress in 3D bioprinting is a key factor
http://dx.doi.org/10.1016/j.jbiosc.2011.03.019 to balance printing resolution and stem cell integrity.
102. Lee V, Singh G, Trasatti J P, et al., 2013, Design and Advanced Healthcare Materials, vol.5(3): 326–333.
fabrication of human skin by three-dimensional biopr- http://dx.doi.org/10.1002/adhm.201500677
inting. Tissue Engineering Part C: Methods, vol.20(6): 113. Colosi C, Shin S R, Manoharan V, et al., 2015, Micr-
473– 484. ofluidic bioprinting of heterogeneous 3D tissue con-
http://dx.doi.org/10.1089/ten.tec.2013.0335 structs using low-viscosity bioink. Advanced Materials,
103. Hong S, Sycks D, Chan H F, et al., 2015, 3D printing of vol.28: 677–684.
highly stretchable and tough hydrogels into complex, http://dx.doi.org/10.1002/adma.201503310
cellularized structures. Advanced Materials, vol.27(27): 114. Marchioli G, van Gurp L, van Krieken P, et al., 2015,
4035–4040. Fabrication of three-dimensional bioplotted hydrogel
http://dx.doi.org/10.1002/adma.201501099 scaffolds for islets of Langerhans transplantation. Bio-
104. Cui X, Breitenkamp K, Finn M, et al., 2012, Direct fabrication, vol.7(2): 025009.
human cartilage repair using three-dimensional bioprin- http://dx.doi.org/10.1088/1758-5090/7/2/025009
ting technology. Tissue Engineering Part A, vol.18(11–12): 115. Wang M, He J, Liu Y, et al., 2015, The trend towards in
1304–1312. vivo bioprinting. International Journal of Bioprinting,
http://dx.doi.org/10.1089/ten.tea.2011.0543 vol.1(1): 15–26.
105. Cooper G M, Miller E D, DeCesare G E, et al., 2009, http://dx.doi.org/10.18063/ijb.2015.01.001
Inkjet-based biopatterning of bone morphogenetic 116. Keriquel V, Guillemot F, Arnault I, et al., 2010, In vivo
protein-2 to spatially control calvarial bone formation. bioprinting for computer-and robotic-assisted medical
Tissue Engineering Part A, vol.16(5): 1749–1759. intervention: preliminary study in mice. Biofabrication,
http://dx.doi.org/10.1089/ten.tea.2009.0650 vol.2(1): 014101.
106. Hsieh F Y, Lin H H and Hsu S H 2015, 3D bioprinting http://dx.doi.org/10.1088/1758-5082/2/1/014101
of neural stem cell-laden thermoresponsive biodegrad- 117. Gao B, Yang Q, Zhao X, et al., 2016, 4D bioprinting for
able polyurethane hydrogel and potential in central biomedical applications, Trends in Biotechnology.
nervous system repair. Biomaterials, vol.71: 48–57. http://dx.doi.org/10.1016/j.tibtech.2016.03.004
26 International Journal of Bioprinting (2016)–Volume 2, Issue 2

