Page 30 - IJB-2-2
P. 30

3D bioprinting technology for regenerative medicine applications

                  cleus pulposus  tissue regeneration.  International  Jou-  http://dx.doi.org/10.1016/j.biomaterials.2015.08.028
                  rnal of Molecular Sciences, vol.16(7): 15118–15135.   107.  Alan F J, Catherine F, Dirk Jan C, et al., 2015, Biopr-
                  http://dx.doi.org/10.3390/ijms160715118           inting of human pluripotent stem cells and their directed
              97.  Holländer J, Genina N, Jukarainen H, et al., 2016, Th-  differentiation into  hepatocyte-like  cells for the gene-
                  ree-dimensional  printed PCL-based  implantable  pro-  ration of mini-livers in  3D.  Biofabrication,  vol.7(4):
                  totypes of medical devices for controlled drug delivery.   044102.
                  Journal of Pharmaceutical Sciences.               http://dx.doi.org/10.1088/1758-5090/7/4/044102
                  http://dx.doi.org/10.1016/j.xphs.2015.12.012   108.  Tasoglu S and Demirci U, 2013, Bioprinting for stem cell
              98.  Loo Y and Hauser C A, 2015, Bioprinting synthetic   research. Trends in Biotechnology, vol.31(1): 10–19.
                  self-assembling peptide hydrogels for biomedical   http://dx.doi.org/10.1016/j.tibtech.2012.10.005
                  applications. Biomedical Materials, vol.11(1): 014103.   109.  Liliang O, Rui Y, Shuangshuang M, et al., 2015, Three-
                  http://dx.doi.org/10.1088/1748-6041/11/1/014103   dimensional bioprinting of embryonic stem cells directs
              99.  Hauser C A E, Deng R, Mishra A, et al., 2011, Natural tri-   highly uniform embryoid body  formation.  Biofabrica-
                  to hexapeptides self-assemble in water to amyloid β-type   tion, vol.7(4): 044101.
                  fiber  aggregates  by  unexpected  α-helical intermediate   http://dx.doi.org/10.1088/1758-5090/7/4/044101
                  structures.  Proceedings of  the National Academy of   110.  Shanjani Y, Pan C C, Elomaa L, et al., 2015, A novel
                  Sciences, vol.108(4): 1361–1366.                  bioprinting method and system for forming hybrid
                  http://dx.doi.org/10.1073/pnas.1014796108         tissue  engineering constructs.  Biofabrication,  vol.7(4):
              100.  Mishra A,  Loo Y, Deng R,  et al.,  2011, Ultrasmall   045008.
                  natural peptides self-assemble to strong temperature-   http://dx.doi.org/10.1088/1758-5090/7/4/045008
                  resistant helical fibers in scaffolds suitable for tissue   111.  Mingchun D, Bing C, Qingyuan M,  et al.,  2015, 3D
                  engineering. Nano Today, vol.6(3): 232–239.       bioprinting  of BMSC-laden  methacrylamide gelatin
                  http://dx.doi.org/10.1016/j.nantod.2011.05.001    scaffolds with CBD-BMP2-collagen microfibers. Biofa-
              101.  Tirella A, Vozzi F, De Maria C, et al., 2011, Substrate   brication, vol.7(4): 044104.
                  stiffness influences high resolution printing of  living   http://dx.doi.org/10.1088/1758-5090/7/4/044104
                  cells with an ink-jet system. Journal of Bioscience and   112.  Blaeser A, Duarte Campos D F, Puster U, et al., 2015,
                  Bioengineering, vol.112(1): 79–85.                Controlling shear stress in 3D bioprinting is a key factor
                  http://dx.doi.org/10.1016/j.jbiosc.2011.03.019    to balance printing resolution and stem cell integrity.
              102.  Lee V, Singh G, Trasatti J P, et al., 2013, Design and   Advanced Healthcare Materials, vol.5(3): 326–333.
                  fabrication of human skin by three-dimensional biopr-  http://dx.doi.org/10.1002/adhm.201500677
                  inting. Tissue Engineering Part C: Methods, vol.20(6):   113.  Colosi C, Shin S R, Manoharan V, et al., 2015, Micr-
                  473– 484.                                         ofluidic  bioprinting  of  heterogeneous 3D tissue con-
                  http://dx.doi.org/10.1089/ten.tec.2013.0335       structs using low-viscosity bioink. Advanced Materials,
              103.  Hong S, Sycks D, Chan H F, et al., 2015, 3D printing of   vol.28: 677–684.
                  highly stretchable and  tough hydrogels into  complex,   http://dx.doi.org/10.1002/adma.201503310
                  cellularized structures. Advanced Materials, vol.27(27):   114.  Marchioli G, van Gurp L, van Krieken P, et al., 2015,
                  4035–4040.                                        Fabrication  of three-dimensional bioplotted hydrogel
                  http://dx.doi.org/10.1002/adma.201501099          scaffolds for islets of Langerhans transplantation. Bio-
              104.  Cui X, Breitenkamp K, Finn  M,  et al.,  2012, Direct   fabrication, vol.7(2): 025009.
                  human cartilage repair using three-dimensional bioprin-  http://dx.doi.org/10.1088/1758-5090/7/2/025009
                  ting technology. Tissue Engineering Part A, vol.18(11–12):   115.  Wang M, He J, Liu Y, et al., 2015, The trend towards in
                  1304–1312.                                        vivo  bioprinting.  International Journal of Bioprinting,
                  http://dx.doi.org/10.1089/ten.tea.2011.0543       vol.1(1): 15–26.
              105.  Cooper G M, Miller E D, DeCesare G E, et al., 2009,   http://dx.doi.org/10.18063/ijb.2015.01.001
                  Inkjet-based biopatterning of bone morphogenetic   116.  Keriquel V, Guillemot F, Arnault I, et al., 2010, In vivo
                  protein-2 to spatially control calvarial bone formation.   bioprinting  for computer-and robotic-assisted  medical
                  Tissue Engineering Part A, vol.16(5): 1749–1759.   intervention: preliminary study in mice. Biofabrication,
                  http://dx.doi.org/10.1089/ten.tea.2009.0650       vol.2(1): 014101.
              106.  Hsieh F Y, Lin H H and Hsu S H 2015, 3D bioprinting   http://dx.doi.org/10.1088/1758-5082/2/1/014101
                  of neural stem cell-laden thermoresponsive biodegrad-  117.  Gao B, Yang Q, Zhao X, et al., 2016, 4D bioprinting for
                  able  polyurethane  hydrogel and  potential in central   biomedical applications, Trends in Biotechnology.
                  nervous system repair. Biomaterials, vol.71: 48–57.   http://dx.doi.org/10.1016/j.tibtech.2016.03.004



            26                          International Journal of Bioprinting (2016)–Volume 2, Issue 2
   25   26   27   28   29   30   31   32   33   34   35