Page 29 - IJB-2-2
P. 29
Dhakshinamoorthy Sundaramurthi, Sakandar Rauf and Charlotte A. E. Hauser
with degradation sites for proteases involved in cell http://dx.doi.org/10.1016/j.biomaterials.2013.09.078
migration. Macromolecules, vol.32(1): 241–244. 86. Schuurman W, Levett P A, Pot M W, et al., 2013, Gela-
http://dx.doi.org/10.1021/ma981296k tin-methacrylamide hydrogels as potential biomaterials
76. Karp J M, Yeh J, Eng G, et al., 2007, Controlling size, for fabrication of tissue-engineered cartilage constructs.
shape and homogeneity of embryoid bodies using poly Macromolecular Bioscience, vol.13(5): 551–561.
(ethylene glycol) microwells. Lab on a Chip, vol.7(6): http://dx.doi.org/10.1002/mabi.201200471
786–794. 87. Pescosolido L, Schuurman W, Malda J, et al., 2011,
http://dx.doi.org/10.1039/b705085m Hyaluronic acid and dextran-based semi-IPN hydrogels
77. Ahn S, Lee H, Bonassar L J, et al., 2012, Cells as biomaterials for bioprinting. Biomacromolecules,
(MC3T3- E1)-laden alginate scaffolds fabricated by a vol.12(5): 1831–1838.
modified solid-freeform fabrication process supple- http://dx.doi.org/10.1021/bm200178w
mented with an aerosol spraying. Biomacromolecules, 88. Skardal A, Zhang J, McCoard L, et al., 2010, Photo-
vol.13(9): 2997–3003. crosslinkable hyaluronan-gelatin hydrogels for two-step
http://dx.doi.org/10.1021/bm3011352 bioprinting. Tissue Engineering Part A, vol.16(8):
78. Gaole D, Wenfeng W, Yuliang Z, et al., 2016, Con- 2675–2685.
trollable 3D alginate hydrogel patterning via visible- light http://dx.doi.org/10.1089/ten.tea.2009.0798
induced electrodeposition. Biofabrication, vol.8(2): 89. Zhao Y, Li Y, Mao S, et al., 2015, The influence of
025004. printing parameters on cell survival rate and printability
http://dx.doi.org/10.1088/1758-5090/8/2/025004 in microextrusion-based 3D cell printing technology.
79. LeRoux M A, Guilak F and Setton L A, 1999, Com- Biofabrication, vol.7(4): 045002.
pressive and shear properties of alginate gel: effects of http://dx.doi.org/10.1088/1758-5090/7/4/045002
sodium ions and alginate concentration. Journal of Bio- 90. Ghosh S, Parker S T and Wang X, 2008, Direct-write
medical Materials Research, vol.47(1): 46–53. assembly of microperiodic silk fibroin scaffolds for
http://dx.doi.org/10.1002/(SICI)1097-4636(199910)47: tissue engineering applications. Advanced Functional
1%3C46::AID-JBM6%3E3.0.CO;2-N Materials, vol.18(13): 1883–1889.
80. Song S J, Choi J, Park Y D, et al., 2011, Sodium http://dx.doi.org/10.1002/adfm.200800040
alginate hydrogel-based bioprinting using a novel mul- 91. Das S, Pati F, Choi Y J, et al., 2015, Bioprintable, cell-
tinozzle bioprinting system. Artificial Organs, vol.35(11): laden silk fibroin–gelatin hydrogel supporting multil-
1132– 1136. ineage differentiation of stem cells for fabrication of
http://dx.doi.org/10.1111/j.1525-1594.2011.01377.x three-dimensional tissue constructs. Acta Biomaterialia,
81. Jia J, Richards D J, Pollard S, et al., 2014, Engineering vol.11: 233–246.
alginate as bioink for bioprinting. Acta Biomaterialia, http://dx.doi.org/10.1016/j.actbio.2014.09.023
vol.10(10): 4323–4331. 92. Das S, Pati F, Chameettachal S, et al., 2013, Enhanced
http://dx.doi.org/10.1016/j.actbio.2014.06.034 redifferentiation of chondrocytes on microperiodic silk/
82. Lee J B, Wang X, Faley S, et al., 2016, Development of gelatin scaffolds: toward tailor-made tissue engineering.
3D microvascular networks within gelatin hydrogels Biomacromolecules, vol.14(2): 311–321.
using thermoresponsive sacrificial microfibers. Adva- http://dx.doi.org/10.1021/bm301193t
nced Healthcare Materials, vol.5(7): 781–785. 93. Lutolf MP and Hubbell J A, 2005, Synthetic bio-
http://dx.doi.org/10.1002/adhm.201500792 materials as instructive extracellular microenvironments
83. Bocquier A A, Potts J R, Pickford A R, et al., 1999, for morphogenesis in tissue engineering. Nature Biote-
Solution structure of a pair of modules from the chnology, vol.23(1): 47–55.
gelatin-binding domain of fibronectin. Structure, http://dx.doi.org/10.1038/nbt1055
vol.7(12): 1451–S1453. 94. Pirlo R K, Wu P, Liu J, et al., 2012, PLGA/hydrogel
http://dx.doi.org/10.1016/S0969-2126(00)88336-7 biopapers as a stackable substrate for printing HUVEC
84. Sawatjui N, Damrongrungruang T, Leeanansaksiri W, et networks via BioLP™. Biotechnology and Bioengineer-
al., 2015, Silk fibroin/gelatin–chondroitin sulfate–hya- ing, vol.109(1): 262–273.
luronic acid effectively enhances in vitro chondrogen- http://dx.doi.org/10.1002/bit.23295
esis of bone marrow mesenchymal stem cells. Materials 95. Cui X, Breitenkamp K, Finn M G, et al., 2012, Direct
Science and Engineering: C, vol.52: 90–96. human cartilage repair using three-dimensional biopri-
http://dx.doi.org/10.1016/j.msec.2015.03.043 nting technology. Tissue Engineering Part A,
85. Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D vol.18(11–12): 1304–1312.
printing of gelatin methacrylamide cell-laden tissue- http://dx.doi.org/10.1089/ten.tea.2011.0543
engineered constructs with high cell viability. Bioma- 96. Rosenzweig D H, Carelli E, Steffen T, et al., 2015, 3D-
terials, vol.35(1): 49–62. printed ABS and PLA scaffolds for cartilage and nu-
International Journal of Bioprinting (2016)–Volume 2, Issue 2 25

