Page 29 - IJB-2-2
P. 29

Dhakshinamoorthy Sundaramurthi, Sakandar Rauf and Charlotte A. E. Hauser

                  with  degradation sites for proteases involved  in cell   http://dx.doi.org/10.1016/j.biomaterials.2013.09.078
                  migration. Macromolecules, vol.32(1): 241–244.   86.  Schuurman W, Levett P A, Pot M W, et al., 2013, Gela-
                  http://dx.doi.org/10.1021/ma981296k               tin-methacrylamide hydrogels as potential biomaterials
              76.  Karp J M, Yeh J, Eng G, et al., 2007, Controlling size,   for fabrication of tissue-engineered cartilage constructs.
                  shape and homogeneity of embryoid bodies using poly   Macromolecular Bioscience, vol.13(5): 551–561.
                  (ethylene glycol) microwells. Lab on a Chip, vol.7(6):   http://dx.doi.org/10.1002/mabi.201200471
                  786–794.                                      87.  Pescosolido L, Schuurman  W, Malda  J,  et al.,  2011,
                  http://dx.doi.org/10.1039/b705085m                Hyaluronic acid and dextran-based semi-IPN hydrogels
              77.  Ahn  S,  Lee H, Bonassar L J,  et al.,  2012, Cells   as biomaterials for bioprinting.  Biomacromolecules,
                  (MC3T3-  E1)-laden  alginate  scaffolds fabricated by a   vol.12(5): 1831–1838.
                  modified solid-freeform fabrication process  supple-  http://dx.doi.org/10.1021/bm200178w
                  mented with an aerosol spraying.  Biomacromolecules,   88.  Skardal A, Zhang J, McCoard  L,  et al.,  2010, Photo-
                  vol.13(9): 2997–3003.                             crosslinkable hyaluronan-gelatin hydrogels for two-step
                  http://dx.doi.org/10.1021/bm3011352               bioprinting.  Tissue Engineering  Part  A,  vol.16(8):
              78.  Gaole D, Wenfeng W, Yuliang Z,  et al.,  2016, Con-  2675–2685.
                  trollable 3D alginate hydrogel patterning via visible- light   http://dx.doi.org/10.1089/ten.tea.2009.0798
                  induced electrodeposition.  Biofabrication,  vol.8(2):   89.  Zhao  Y, Li Y,  Mao  S,  et al.,  2015, The influence of
                  025004.                                           printing parameters on cell survival rate and printability
                  http://dx.doi.org/10.1088/1758-5090/8/2/025004    in microextrusion-based 3D cell printing technology.
              79.  LeRoux M A,  Guilak F  and Setton L A, 1999, Com-  Biofabrication, vol.7(4): 045002.
                  pressive and shear properties of alginate gel: effects of   http://dx.doi.org/10.1088/1758-5090/7/4/045002
                  sodium ions and alginate concentration. Journal of Bio-  90.  Ghosh S, Parker S T and Wang X, 2008, Direct-write
                  medical Materials Research, vol.47(1): 46–53.     assembly of microperiodic silk fibroin scaffolds for
                  http://dx.doi.org/10.1002/(SICI)1097-4636(199910)47:  tissue engineering  applications.  Advanced Functional
                  1%3C46::AID-JBM6%3E3.0.CO;2-N                     Materials, vol.18(13): 1883–1889.
              80.  Song S J, Choi J, Park Y D,  et al.,  2011, Sodium   http://dx.doi.org/10.1002/adfm.200800040
                  alginate hydrogel-based bioprinting using a novel mul-  91.  Das S, Pati F, Choi Y J, et al., 2015, Bioprintable, cell-
                  tinozzle bioprinting system. Artificial Organs, vol.35(11):   laden silk fibroin–gelatin hydrogel supporting multil-
                  1132– 1136.                                       ineage differentiation of stem cells for fabrication of
                  http://dx.doi.org/10.1111/j.1525-1594.2011.01377.x   three-dimensional tissue constructs. Acta Biomaterialia,
              81.  Jia J, Richards D J, Pollard S, et al., 2014, Engineering   vol.11: 233–246.
                  alginate as bioink for bioprinting.  Acta  Biomaterialia,   http://dx.doi.org/10.1016/j.actbio.2014.09.023
                  vol.10(10): 4323–4331.                        92.  Das S, Pati F, Chameettachal S, et al., 2013, Enhanced
                  http://dx.doi.org/10.1016/j.actbio.2014.06.034    redifferentiation of chondrocytes on microperiodic silk/
              82.  Lee J B, Wang X, Faley S, et al., 2016, Development of   gelatin scaffolds: toward tailor-made tissue engineering.
                  3D  microvascular networks within gelatin hydrogels   Biomacromolecules, vol.14(2): 311–321.
                  using  thermoresponsive sacrificial microfibers.  Adva-  http://dx.doi.org/10.1021/bm301193t
                  nced Healthcare Materials, vol.5(7): 781–785.   93.  Lutolf MP and Hubbell J A, 2005, Synthetic  bio-
                  http://dx.doi.org/10.1002/adhm.201500792          materials as instructive extracellular microenvironments
              83.  Bocquier A A,  Potts J R, Pickford A R,  et al.,  1999,   for morphogenesis in tissue engineering. Nature Biote-
                  Solution structure of a pair  of modules from the   chnology, vol.23(1): 47–55.
                  gelatin-binding domain of fibronectin.  Structure,   http://dx.doi.org/10.1038/nbt1055
                  vol.7(12): 1451–S1453.                        94.  Pirlo R K, Wu P, Liu J,  et al.,  2012, PLGA/hydrogel
                  http://dx.doi.org/10.1016/S0969-2126(00)88336-7   biopapers as a stackable substrate for printing HUVEC
              84.  Sawatjui N, Damrongrungruang T, Leeanansaksiri W, et   networks via BioLP™. Biotechnology and Bioengineer-
                  al.,  2015, Silk fibroin/gelatin–chondroitin sulfate–hya-  ing, vol.109(1): 262–273.
                  luronic  acid effectively enhances  in vitro  chondrogen-  http://dx.doi.org/10.1002/bit.23295
                  esis of bone marrow mesenchymal stem cells. Materials   95.  Cui X, Breitenkamp K, Finn M G, et al., 2012, Direct
                  Science and Engineering: C, vol.52: 90–96.        human cartilage repair using three-dimensional biopri-
                  http://dx.doi.org/10.1016/j.msec.2015.03.043      nting technology.  Tissue Engineering Part  A,
              85.  Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D   vol.18(11–12): 1304–1312.
                  printing of gelatin methacrylamide cell-laden tissue-   http://dx.doi.org/10.1089/ten.tea.2011.0543
                  engineered constructs with high cell viability.  Bioma-  96.  Rosenzweig D H, Carelli E, Steffen T, et al., 2015, 3D-
                  terials, vol.35(1): 49–62.                        printed ABS and PLA scaffolds for cartilage  and nu-

                                        International Journal of Bioprinting (2016)–Volume 2, Issue 2      25
   24   25   26   27   28   29   30   31   32   33   34