Page 285 - IJB-10-2
P. 285

International Journal of Bioprinting                                  Microfluidic spinning for neural models




            6.   Chen S, Wu C, Liu A, et al. Biofabrication of nerve fibers   19.  Yu Y, Wei W, Wang Y, Xu C, Guo Y, Qin J. Simple spinning
               with mimetic myelin sheath-like structure and aligned   of heterogeneous hollow microfibers on chip.  Adv  Mater.
               fibrous niche. Biofabrication. 2020;12(3):035013.  2016;28(31):6649-6655.
               doi: 10.1088/1758-5090/ab860d                      doi: 10.1002/adma.201601504
            7.   Guo Y, Yan J, Xin JH, et al. Microfluidic-directed biomimetic   20.  Feng F, He J, Li J, Mao M, Li D. Multicomponent bioprinting
               Bulbine torta-like microfibers based on inhomogeneous   of heterogeneous hydrogel constructs based on microfluidic
               viscosity rope-coil effect. Lab Chip. 2021;21(13):2594-2604.  printheads. Int J Bioprint. 2019;5(2):39-48.
               doi: 10.1039/d1lc00252j                            doi: 10.18063/ijb.v5i2.202
            8.   Bosch-Rue E, Delgado LM, Gil FJ, Perez RA. Direct extrusion   21.  Abrishamkar A, Nilghaz A, Saadatmand M,  Naeimirad
               of individually encapsulated endothelial and smooth muscle   M, deMello AJ. Microfluidic-assisted fiber production:
               cells mimicking blood vessel structures and vascular native   potentials, limitations, and prospects.  Biomicrofluidics.
               cell alignment. Biofabrication. 2020;13(1):015003.  2022;16(6):061504.
               doi: 10.1088/1758-5090/abbd27                      doi: 10.1063/5.0129108
            9.   Yao K, Li W, Li K, et al. Simple fabrication of multicomponent   22.  Du XY, Li Q, Wu G,  Chen S. Multifunctional micro/
               heterogeneous fibers for cell co-culture via microfluidic   nanoscale fibers based on microfluidic spinning technology.
               spinning. Macromol Biosci. 2020;20(3):1900395.     Adv Mater. 2019;31(52):1903733.
               doi: 10.1002/mabi.201900395                        doi: 10.1002/adma.201903733
            10.  Liu Y, Xu P, Liang Z,  et al. Hydrogel microfibers with   23.  Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK.
               perfusable folded channels for tissue constructs with folded   Microfluidic tissue engineering and bio-actuation.  Adv
               morphology. RSC Adv. 2018;8(42):23475-23480.       Mater. 2022;34(23):2108427.
               doi: 10.1039/c8ra04192j                            doi: 10.1002/adma.202108427
            11.  Tian L, Ma J, Li W, Zhang X, Gao X. Microfiber fabricated   24.  Aykar SS, Reynolds DE, McNamara MC,  Hashemi NH.
               via microfluidic  spinning toward tissue engineering   Manufacturing of poly(ethylene glycol diacrylate)-
               applications. Macromol Biosci. 2023;23(3):2200429.  based hollow microvessels using microfluidics.  RSC Adv.
               doi: 10.1002/mabi.202200429                        2020;10(7):4095-4102.
            12.  Song S, Zhou J, Wan J, et al. Three-dimensional printing of      doi: 10.1039/c9ra10264g
               microfiber- reinforced hydrogel loaded with oxymatrine for   25.  Lee KH, Shin SJ, Park Y,  Lee S-H. Synthesis of cell-
               treating spinal cord injury. Int J Bioprint. 2023;9(3):1-14.  laden alginate hollow fibers using microfluidic chips and
               doi: 10.18063/ijb.692                              microvascularized tissue-engineering applications.  Small.
            13.  Liu X, Yue T, Kojima M, Huang Q, Arai T. Bio-assembling   2009;5(11):1264-1268.
               and bioprinting for engineering microvessels from the      doi: 10.1002/smll.200801667
               bottom up. Int J Bioprint. 2021;7(3):3-17.      26.  Zhao M, Liu H, Zhang X, Wang H, Tao T, Qin J. A flexible
               doi: 10.18063/ijb.v7i3.366                         microfluidic strategy to generate grooved microfibers
            14.  Xiao Y, Yang C, Zhai X, et al. Bioinspired tough and strong   for  guiding  cell  alignment.  Biomater Sci.  2021;9(14):
               fibers with hierarchical  core–shell  structure.  Adv Mater   4880-4890.
               Interfaces. 2022;10(2):2201962.                    doi: 10.1039/d1bm00549a
               doi: 10.1002/admi.202201962                     27.  Liu H, Wang Y, Yu Y,  Chen W, Jiang L, Qin J. Simple
            15.  Cheng J, Jun Y, Qin J,  Lee S-H. Electrospinning versus   fabrication of inner  chitosan-coated alginate hollow
               microfluidic spinning of functional fibers for biomedical   microfiber with higher stability. J Biomed Mater Res B Appl
               applications. Biomaterials. 2017;114:121-143.      Biomater. 2019;107(8):2527-2536.
               doi: 10.1016/j.biomaterials.2016.10.040            doi: 10.1002/jbm.b.34343
            16.  Nguyen TPT, Tran BM, Lee NY. Microfluidic approach for   28.  Lee KY, Mooney DJ. Alginate: properties and biomedical
               the fabrication of cell-laden hollow fibers for endothelial   applications. Prog Polym Sci. 2012;37(1):106-126.
               barrier research. J Mater Chem B. 2018;6(38):6057-6066.     doi: 10.1016/j.progpolymsci.2011.06.003
               doi: 10.1039/c8tb02031k                         29.  Wu Z, Cai H, Ao Z,  Xu J, Heaps S, Guo F. Microfluidic
            17.  Yu Y, Shang L, Guo J, Wang J, Zhao Y. Design of capillary   printing of tunable hollow microfibers for vascular tissue
               microfluidics for spinning cell-laden microfibers.  Nat   engineering. Adv Mater Technol. 2021;6(8):2000683.
               Protoc. 2018;13(11):2557-2579.                     doi: 10.1002/admt.202000683
               doi: 10.1038/s41596-018-0051-4
                                                               30.  Patil P, Szymanski JM, Feinberg AW. Defined micropatterning
            18.  Sun J, Chen J, Liu K,  Zeng H. Mechanically strong   of ECM protein adhesive sites on alginate microfibers for
               proteinaceous fibers: engineered fabrication by microfluidics.   engineering  highly  anisotropic  muscle  cell  bundles.  Adv
               Engineering. 2021;7(5):615-623.                    Mater Technol. 2016;1(4):1600003.
               doi: 10.1016/j.eng.2021.02.005                     doi: 10.1002/admt.201600003

            Volume 10 Issue 2 (2024)                       277                                doi: 10.36922/ijb.1797
   280   281   282   283   284   285   286   287   288   289   290