Page 286 - IJB-10-2
P. 286
International Journal of Bioprinting Microfluidic spinning for neural models
31. Pei Z, Gao M, Xing J, et al. Experimental study on repair of 41. Li W, Yao K, Tian L, Xue C, Zhang X, Gao X. 3D printing
cartilage defects in the rabbits with GelMA-MSCs scaffold of heterogeneous microfibers with multi-hollow structure
prepared by three-dimensional bioprinting. Int J Bioprint. via microfluidic spinning. J Tissue Eng Regen Med.
2023;9(2):176-196. 2022;16(10):913-922.
doi: 10.18063/ijb.v9i2.662 doi: 10.1002/term.3339
32. Chen Z, Lv Z, Zhang Z, Zhang Y, Cui W. Biomaterials for 42. Tan J, Sun X, Zhang J, et al. Exploratory evaluation of EGFR-
microfluidic technology. Mater Futures. 1(1):012401. targeted anti-tumor drugs for lung cancer based on lung-on-
doi: 10.1088/2752-5724/ac39ff a-chip. Biosensors (Basel). 2022;12(8):618.
33. Xie R, Zheng W, Guan L, Ai Y, Liang Q. Engineering of doi: 10.3390/bios12080618
hydrogel materials with perfusable microchannels for 43. Yang X, Li K, Zhang X, et al. Nanofiber membrane supported
building vascularized tissues. Small. 2020;16(15):1902838. lung-on-a-chip microdevice for anti-cancer drug testing.
doi: 10.1002/smll.201902838
Lab Chip. 2018;18(3):486-495.
34. Volpi M, Paradiso A, Costantini M, Świȩszkowski W. doi: 10.1039/c7lc01224a
Hydrogel-based fiber biofabrication techniques for
skeletal muscle tissue engineering. ACS Biomater Sci Eng. 44. Sun X, Li W, Gong X, et al. Investigating the regulation
2022;8(2):379-405. of neural differentiation and injury in PC12 cells using
doi: 10.1021/acsbiomaterials.1c01145 microstructure topographic cues. Biosensors (Basel).
2021;11(10):399.
35. Bertassoni LE, Cecconi M, Manoharan V, et al. Hydrogel doi: 10.3390/bios11100399
bioprinted microchannel networks for vascularization of tissue
engineering constructs. Lab Chip. 2014;14(13):2202-2211. 45. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A,
doi: 10.1039/c4lc00030g Annabi N, Khademhosseini A. Synthesis, properties, and
biomedical applications of gelatin methacryloyl (GelMA)
36. Klotz BJ, Gawlitta D, Rosenberg A, Malda J, Melchels FPW. hydrogels. Biomaterials. 2015;73:254-271.
Gelatin-methacryloyl hydrogels: towards biofabrication- doi: 10.1016/j.biomaterials.2015.08.045
based tissue repair. Trends Biotechnol. 2016;34(5):394-407.
doi: 10.1016/j.tibtech.2016.01.002 46. Tian Y, Wang J, Wang L. Microfluidic fabrication of
bioinspired cavity-microfibers for 3D scaffolds. ACS Appl
37. Gauvin R, Chen YC, Lee JW, et al. Microfabrication of complex
porous tissue engineering scaffolds using 3D projection Mater Interfaces. 2018;10(35):29219-29226.
stereolithography. Biomaterials. 2012;33(15):3824-3834. doi: 10.1021/acsami.8b09212
doi: 10.1016/j.biomaterials.2012.01.048 47. Tian L, Shi J, Li W, Zhang Y, Gao X. Hollow microfiber
38. Wei D, Sun J, Bolderson J, et al. Continuous fabrication assembly-based endocrine pancreas-on-a-chip for
and assembly of spatial cell-laden fibers for a tissue-like sugar substitute evaluation. Adv Healthc Mater. 2023:
construct via a photolithographic-based microfluidic chip. 2302104.
ACS Appl Mater Interfaces. 2017;9(17):14606-14617. doi: 10.1002/adhm.202302104
doi: 10.1021/acsami.7b00078 48. Zuo Y, He X, Yang Y, et al. Microfluidic-based generation
39. Nisbet RM, Gotz J. Amyloid-beta and tau in Alzheimer’s of functional microfibers for biomimetic complex tissue
disease: novel pathomechanisms and non-pharmacological construction. Acta Biomater. 2016;38:153-162.
treatment strategies. J Alzheimers Dis. 2018;64(s1):S517-S527. doi: 10.1016/j.actbio.2016.04.036
doi: 10.3233/JAD-179907 49. Shi X, Ostrovidov S, Zhao Y, et al. Microfluidic spinning
40. Sveinbjornsdottir S. The clinical symptoms of Parkinson’s of cell-responsive grooved microfibers. Adv Funct Mater.
disease. J Neurochem. 12016;39(Suppl 1):318-324. 2015;25(15):2250-2259.
doi: 10.1111/jnc.13691 doi: 10.1002/adfm.201404531
Volume 10 Issue 2 (2024) 278 doi: 10.36922/ijb.1797

