Page 286 - IJB-10-2
P. 286

International Journal of Bioprinting                                  Microfluidic spinning for neural models




            31.  Pei Z, Gao M, Xing J, et al. Experimental study on repair of   41.  Li W, Yao K, Tian L, Xue C, Zhang X, Gao X. 3D printing
               cartilage defects in the rabbits with GelMA-MSCs scaffold   of heterogeneous microfibers with multi-hollow structure
               prepared by three-dimensional bioprinting.  Int J Bioprint.   via microfluidic spinning.  J Tissue Eng Regen Med.
               2023;9(2):176-196.                                 2022;16(10):913-922.
               doi: 10.18063/ijb.v9i2.662                         doi: 10.1002/term.3339
            32.  Chen Z, Lv Z, Zhang Z, Zhang Y, Cui W. Biomaterials for   42.  Tan J, Sun X, Zhang J, et al. Exploratory evaluation of EGFR-
               microfluidic technology. Mater Futures. 1(1):012401.  targeted anti-tumor drugs for lung cancer based on lung-on-
               doi: 10.1088/2752-5724/ac39ff                      a-chip. Biosensors (Basel). 2022;12(8):618.
            33.  Xie R, Zheng W, Guan L,  Ai Y, Liang Q. Engineering of      doi: 10.3390/bios12080618
               hydrogel materials with perfusable microchannels for   43.  Yang X, Li K, Zhang X, et al. Nanofiber membrane supported
               building vascularized tissues. Small. 2020;16(15):1902838.  lung-on-a-chip microdevice for anti-cancer drug testing.
               doi: 10.1002/smll.201902838
                                                                  Lab Chip. 2018;18(3):486-495.
            34.  Volpi M, Paradiso A, Costantini M,  Świȩszkowski W.      doi: 10.1039/c7lc01224a
               Hydrogel-based fiber biofabrication techniques for
               skeletal muscle tissue engineering. ACS Biomater Sci Eng.   44.  Sun  X, Li  W,  Gong X,  et  al. Investigating  the  regulation
               2022;8(2):379-405.                                 of neural differentiation and injury in PC12 cells using
               doi: 10.1021/acsbiomaterials.1c01145               microstructure topographic cues.  Biosensors (Basel).
                                                                  2021;11(10):399.
            35.  Bertassoni LE, Cecconi M, Manoharan V,  et al. Hydrogel      doi: 10.3390/bios11100399
               bioprinted microchannel networks for vascularization of tissue
               engineering constructs. Lab Chip. 2014;14(13):2202-2211.  45.  Yue K, Trujillo-de Santiago G, Alvarez MM,  Tamayol A,
               doi: 10.1039/c4lc00030g                            Annabi N, Khademhosseini A. Synthesis, properties, and
                                                                  biomedical applications of gelatin methacryloyl (GelMA)
            36.  Klotz BJ, Gawlitta D, Rosenberg A, Malda J, Melchels FPW.   hydrogels. Biomaterials. 2015;73:254-271.
               Gelatin-methacryloyl hydrogels: towards biofabrication-     doi: 10.1016/j.biomaterials.2015.08.045
               based tissue repair. Trends Biotechnol. 2016;34(5):394-407.
               doi: 10.1016/j.tibtech.2016.01.002              46.  Tian Y, Wang J, Wang L. Microfluidic fabrication of
                                                                  bioinspired cavity-microfibers for 3D scaffolds.  ACS Appl
            37.  Gauvin R, Chen YC, Lee JW, et al. Microfabrication of complex
               porous  tissue  engineering  scaffolds  using  3D  projection   Mater Interfaces. 2018;10(35):29219-29226.
               stereolithography. Biomaterials. 2012;33(15):3824-3834.     doi: 10.1021/acsami.8b09212
               doi: 10.1016/j.biomaterials.2012.01.048         47.  Tian L, Shi J, Li W,  Zhang Y, Gao X. Hollow microfiber
            38.  Wei D, Sun J, Bolderson J,  et al. Continuous fabrication   assembly-based  endocrine  pancreas-on-a-chip  for
               and assembly of spatial cell-laden fibers for a tissue-like   sugar  substitute  evaluation.  Adv  Healthc  Mater.  2023:
               construct via a photolithographic-based microfluidic chip.   2302104.
               ACS Appl Mater Interfaces. 2017;9(17):14606-14617.     doi: 10.1002/adhm.202302104
               doi: 10.1021/acsami.7b00078                     48.  Zuo Y, He X, Yang Y, et al. Microfluidic-based generation
            39.  Nisbet RM, Gotz J. Amyloid-beta and tau in Alzheimer’s   of functional microfibers for biomimetic complex tissue
               disease: novel pathomechanisms and non-pharmacological   construction. Acta Biomater. 2016;38:153-162.
               treatment strategies. J Alzheimers Dis. 2018;64(s1):S517-S527.     doi: 10.1016/j.actbio.2016.04.036
               doi: 10.3233/JAD-179907                         49.  Shi X, Ostrovidov S, Zhao Y,  et al. Microfluidic spinning
            40.  Sveinbjornsdottir S. The clinical symptoms of Parkinson’s   of cell-responsive grooved microfibers.  Adv Funct Mater.
               disease. J Neurochem. 12016;39(Suppl 1):318-324.   2015;25(15):2250-2259.
               doi: 10.1111/jnc.13691                             doi: 10.1002/adfm.201404531



















            Volume 10 Issue 2 (2024)                       278                                doi: 10.36922/ijb.1797
   281   282   283   284   285   286   287   288   289   290   291