Page 405 - IJB-10-2
P. 405
International Journal of Bioprinting Automated bioink mixer improves bioprinting
forward in cell manufacturing, standards, 3D bioprinting, 53. Manolescu VD, Secco EL. Design of an assistive low-cost 6
artificial intelligence-enabled automation, education, and d.o.f. robotic arm with gripper. In: Yang XS, Sherratt S, Dey
training. Stem Cells Transl Med. 2020;9(7):728-733. N, Joshi A, eds. Proceedings of Seventh International Congress
doi: 10.1002/sctm.19-0389 on Information and Communication Technology. Singapore:
Springer Nature Singapore; 2023: 39-55.
46. Brown A. 3D printing in instructional settings: identifying
a curricular hierarchy of activities. TechTrends. 2015; 54. Othman SA, Soon CF, Ma NL, et al. Alginate-gelatin bioink
59(5):16-24. for bioprinting of hela spheroids in alginate-gelatin hexagon
doi: 10.1007/s11528-015-0887-1 shaped scaffolds. Polym Bull. 2021;78(11):6115-6135.
doi: 10.1007/s00289-020-03421-y
47. Boogert NJ, Madden JR, Morand-Ferron J, Thornton
A. Measuring and understanding individual differences 55. Freeman FE, Pitacco P, van Dommelen LHA, et al. 3D
in cognition. Philos Trans R Soc Lond B Biol Sci. bioprinting spatiotemporally defined patterns of growth
2018;373(1756):20170280. factors to tightly control tissue regeneration. Sci Adv.
doi: 10.1098/rstb.2017.0280 2020;6(33):eabb5093.
doi: 10.1126/sciadv.abb5093
48. Spurk JH, Aksel N, eds. Fluid Mechanics. Cham: Springer
International Publishing; 2020: 223-249. 56. Mirek A, Belaid H, Bartkowiak A, et al. Gelatin methacrylate
doi: 10.1007/978-3-030-30259-7_7 hydrogel with drug-loaded polymer microspheres as a new
bioink for 3D bioprinting. Biomater Adv. 2023;150:213436.
49. Li J, Shelby T, Alizadeh HV, Shelby H, Yang YP. Development doi: 10.1016/j.bioadv.2023.213436
and characterization of an automated active mixing platform
for hydrogel bioink preparation. Int J Bioprint. 2023;9(4):4. 57. Seo JW, Kim GM, Choi Y, Cha JM, Bae H. Improving
doi: 10.18063/ijb.705 printability of digital-light-processing 3D bioprinting
via photoabsorber pigment adjustment. Int J Mol Sci.
50. Samokhin AS. Syringe pump created using 3D printing 2022;23(10):5428.
technology and arduino platform. J Anal Chem. doi: 10.3390/ijms23105428
2020;75(3):416-421.
doi: 10.1134/S1061934820030156 58. Ding Y-W, Zhang X-W, Mi C-H, Qi X-Y, Zhou J, Wei D-X.
Recent advances in hyaluronic acid-based hydrogels for 3D
51. Campbell T, Jones JFX. Design and implementation of bioprinting in tissue engineering applications. Smart Mater
a low cost, modular, adaptable and open-source XYZ Med. 2023;4:59-68.
positioning system for neurophysiology. HardwareX. 2020; doi: 10.1016/j.smaim.2022.07.003
7:e00098.
doi: 10.1016/j.ohx.2020.e00098 59. Serafin A, Culebras M, Oliveira JM, Koffler J, Collins
MN. 3D printable electroconductive gelatin-hyaluronic
52. Hadisujoto B, Wijaya R. Development and accuracy test of a acid materials containing polypyrrole nanoparticles for
fused deposition modeling (FDM) 3D printing using H-Bot electroactive tissue engineering. Adv Compos Hybrid Mater.
mechanism. IJoCED. 2021;3(1):46-53. 2023;6(3):109.
doi: 10.35806/ijoced.v3i1.148 doi: 10.1007/s42114-023-00665-w
Volume 10 Issue 2 (2024) 397 doi: 10.36922/ijb.1974

