Page 50 - IJB-10-2
P. 50
International Journal of Bioprinting DNA-functionalized hyaluronic acid bioink
doi: 10.1038/s41565-023-01483-3 54. Lu S, Wang S, Zhao J, Sun J, Yang X. A pH-controlled
bidirectionally pure DNA hydrogel: reversible self-
42. Yang D, Hartman MR, Derrien TL, et al. DNA materials:
bridging nanotechnology and biotechnology. Acc Chem Res. assembly and fluorescence monitoring. Chem Commun.
2014;47(6):1902-1911. 2018;54(36):4621-4624.
doi: 10.1021/ar5001082 doi: 10.1039/C8CC01603H
43. Roh YH, Ruiz RC, Peng S, Lee, JB, Luo D. Engineering DNA- 55. Wang L, Sun L, Gu Z, et al. N-carboxymethyl chitosan/
based functional materials. Chem Soc Rev. 2011;40(12): sodium alginate composite hydrogel loading plasmid DNA
5730-5744. as a promising gene activated matrix for in-situ burn wound
doi: 10.1039/C1CS15162B treatment. Bioact Mater. 2022;15:330-342.
doi: 10.1016/j.bioactmat.2021.12.012
44. Nöll T, Schönherr H, Wesner D, Schopferer M, Paululat T,
Nöll G. Construction of three‐dimensional DNA hydrogels 56. Kim IG, Park MR, Choi YH, et al. Regeneration of paralyzed
from linear building blocks. Angew Chem Int Ed Engl. vocal fold by the injection of plasmid DNA complex-
2014;126(32):8468-8472. loaded hydrogel bulking agent. ACS Biomater Sci Eng.
doi: 10.1002/ange.201402497 2019;5(3):1497-1508.
doi: 10.1021/acsbiomaterials.8b01541
45. Cheng E, Xing Y, Chen P, et al. A pH‐triggered, fast‐
responding DNA hydrogel. Angew Chem Int Ed Engl. 57. Liu H, Cao T, Xu Y, Dong Y, Liu D. Tuning the mechanical
2009;48(41):7660-7663. properties of a DNA hydrogel in three phases based on ATP
doi: 10.1002/anie.200902538 aptamer. Int J Mol Sci. 2018;19(6):1633.
doi: 10.3390/ijms19061633
46. Xing Y, Cheng E, Yang Y, et al. Self‐assembled DNA hydrogels
with designable thermal and enzymatic responsiveness. Adv 58. Sekar MP, Suresh S, Zennifer A, Sethuraman S,
Mater. 2011;23(9):1117-1121. Sundaramurthi D. Hyaluronic acid as bioink and hydrogel
doi: 10.1002/adma.201003343 scaffolds for tissue engineering applications. ACS Biomater
Sci Eng. 2023;9(6):3134-3159.
47. Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. doi: 10.1021/acsbiomaterials.3c00299
Enzyme-catalysed assembly of DNA hydrogel. Nat Mater.
2006;5(10):797-801. 59. Wang C, Zhang J. Recent advances in stimuli-responsive DNA-
doi: 10.1038/nmat1741 based hydrogels. ACS Appl Bio Mater. 2022;5(5): 1934-1953.
doi: 10.1021/acsabm.1c01197
48. Hartman MR, Yang D, Tran TN, et al. Thermostable
branched DNA nanostructures as modular primers for 60. Kahn JS, Trifonov A, Cecconello A, Guo W, Fan C, Willner
polymerase chain reaction. Angew Chem Int Ed Engl. I. Integration of switchable DNA-based hydrogels with
2013;125(33):8861-8864. surfaces by the hybridization chain reaction. Nano Lett.
doi: 10.1002/ange.201302175 2015;15(11):7773-7778.
doi: 10.1021/acs.nanolett.5b04101
49. Wang J, Chao J, Liu H, et al. Clamped hybridization chain
reactions for the self‐assembly of patterned DNA hydrogels. 61. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for
Angew Chem Int Ed Engl. 2017;56(8):2171-2175. biomedical applications. Adv Mater. 2011;23(12):H41-H56.
doi: 10.1002/anie.201610125 doi: 10.1002/adma.201003963
50. Ren J, Hu Y, Lu CH, et al. pH-responsive and switchable 62. Fujita S, Hara S, Hosono A, Sugihara S, Uematsu H, Suye SI.
triplex- based DNA hydrogels. Chem Sci. 2015;6(7): Hyaluronic acid hydrogel crosslinked with complementary
4190-4195. DNAs. Adv Polym Technol. 2020;2020:1470819.
doi: 10.1039/C5SC00594A doi: 10.1155/2020/1470819
51. Song P, Ye D, Zuo X, et al. DNA hydrogel with aptamer- 63. Sun Y, Qi S, Dong X, Qin M, Zhang Y, Wang Z. Colorimetric
toehold-based recognition, cloaking, and decloaking of aptasensor targeting zearalenone developed based on the
circulating tumor cells for live cell analysis. Nano Lett. hyaluronic acid-DNA hydrogel and bimetallic MOFzyme.
2017;17(9):5193-5198. Biosens Bioelectron. 2022;212: 114366.
doi: 10.1021/acs.nanolett.7b01006 doi: 10.1016/j.bios.2022.114366
52. Chu B, Zhang D, Paukstelis PJ. A DNA G-quadruplex/i- 64. Liedl T, Dietz H, Yurke B, Simmel F. Controlled trapping
motif hybrid. Nucleic Acids Res. 2019;47(22):11921-11930. and release of quantum dots in a DNA‐switchable hydrogel.
doi: 10.1093/nar/gkz1008 Small. 2007;3(10):1688-1693.
doi: 10.1002/smll.200700366
53. Zhou X, Li C, Shao Y, Chen C, Yanga Z, Liu D. Reversibly
tuning the mechanical properties of a DNA hydrogel 65. Lin DC, Yurke B, Langrana NA. Inducing reversible
by a DNA nanomotor. Chem Commun. 2016;52(70): stiffness changes in DNA-crosslinked gels. J Mater Res.
10668-10671. 2005;20(6):1456-1464.
doi: 10.1039/C6CC04724F doi: 10.1557/JMR.2005.0186
Volume 10 Issue 2 (2024) 42 doi: 10.36922/ijb.1814

