Page 50 - IJB-10-2
P. 50

International Journal of Bioprinting                                DNA-functionalized hyaluronic acid bioink




               doi: 10.1038/s41565-023-01483-3                 54.  Lu S, Wang S, Zhao J, Sun J, Yang X. A pH-controlled
                                                                  bidirectionally pure DNA hydrogel: reversible self-
            42.  Yang D, Hartman MR, Derrien TL, et al. DNA materials:
               bridging nanotechnology and biotechnology. Acc Chem Res.   assembly and fluorescence monitoring.  Chem Commun.
               2014;47(6):1902-1911.                              2018;54(36):4621-4624.
               doi: 10.1021/ar5001082                             doi: 10.1039/C8CC01603H
            43.  Roh YH, Ruiz RC, Peng S, Lee, JB, Luo D. Engineering DNA-   55.  Wang L, Sun L, Gu Z, et al. N-carboxymethyl chitosan/
               based functional materials.  Chem Soc Rev. 2011;40(12):   sodium alginate composite hydrogel loading plasmid DNA
               5730-5744.                                         as a promising gene activated matrix for in-situ burn wound
               doi: 10.1039/C1CS15162B                            treatment. Bioact Mater. 2022;15:330-342.
                                                                  doi: 10.1016/j.bioactmat.2021.12.012
            44.  Nöll T, Schönherr H, Wesner D, Schopferer M, Paululat T,
               Nöll G. Construction of three‐dimensional DNA hydrogels   56.  Kim IG, Park MR, Choi YH, et al. Regeneration of paralyzed
               from linear building blocks.  Angew Chem Int Ed  Engl.   vocal fold by the injection of plasmid DNA complex-
               2014;126(32):8468-8472.                            loaded hydrogel bulking agent.  ACS Biomater Sci Eng.
               doi: 10.1002/ange.201402497                        2019;5(3):1497-1508.
                                                                  doi: 10.1021/acsbiomaterials.8b01541
            45.  Cheng E, Xing Y, Chen P, et al. A pH‐triggered, fast‐
               responding DNA hydrogel.  Angew Chem Int Ed Engl.   57.  Liu H, Cao T, Xu Y, Dong Y, Liu D. Tuning the mechanical
               2009;48(41):7660-7663.                             properties of a DNA hydrogel in three phases based on ATP
               doi: 10.1002/anie.200902538                        aptamer. Int J Mol Sci. 2018;19(6):1633.
                                                                  doi: 10.3390/ijms19061633
            46.  Xing Y, Cheng E, Yang Y, et al. Self‐assembled DNA hydrogels
               with designable thermal and enzymatic responsiveness. Adv   58.  Sekar MP, Suresh S, Zennifer A, Sethuraman S,
               Mater. 2011;23(9):1117-1121.                       Sundaramurthi D. Hyaluronic acid as bioink and hydrogel
               doi: 10.1002/adma.201003343                        scaffolds for tissue engineering applications. ACS Biomater
                                                                  Sci Eng. 2023;9(6):3134-3159.
            47.  Um  SH,  Lee  JB,  Park  N,  Kwon  SY,  Umbach  CC,  Luo  D.      doi: 10.1021/acsbiomaterials.3c00299
               Enzyme-catalysed assembly of DNA hydrogel.  Nat  Mater.
               2006;5(10):797-801.                             59.  Wang C, Zhang J. Recent advances in stimuli-responsive DNA-
               doi: 10.1038/nmat1741                              based hydrogels. ACS Appl Bio Mater. 2022;5(5): 1934-1953.
                                                                  doi: 10.1021/acsabm.1c01197
            48.  Hartman  MR,  Yang  D,  Tran  TN,  et  al.  Thermostable
               branched DNA nanostructures as modular primers for   60.  Kahn JS, Trifonov A, Cecconello A, Guo W, Fan C, Willner
               polymerase chain reaction.  Angew  Chem  Int  Ed  Engl.   I.  Integration  of  switchable  DNA-based  hydrogels  with
               2013;125(33):8861-8864.                            surfaces by the hybridization chain reaction.  Nano  Lett.
               doi: 10.1002/ange.201302175                        2015;15(11):7773-7778.
                                                                  doi: 10.1021/acs.nanolett.5b04101
            49.  Wang J, Chao J, Liu H, et al. Clamped hybridization chain
               reactions for the self‐assembly of patterned DNA hydrogels.   61.  Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for
               Angew Chem Int Ed Engl. 2017;56(8):2171-2175.      biomedical applications. Adv Mater. 2011;23(12):H41-H56.
               doi: 10.1002/anie.201610125                        doi: 10.1002/adma.201003963
            50.  Ren J, Hu Y, Lu CH, et al. pH-responsive and switchable   62.  Fujita S, Hara S, Hosono A, Sugihara S, Uematsu H, Suye SI.
               triplex- based DNA hydrogels.  Chem Sci. 2015;6(7):   Hyaluronic acid hydrogel crosslinked with complementary
               4190-4195.                                         DNAs. Adv Polym Technol. 2020;2020:1470819.
               doi: 10.1039/C5SC00594A                            doi: 10.1155/2020/1470819
            51.  Song P, Ye D, Zuo X, et al. DNA hydrogel with aptamer-   63.  Sun Y, Qi S, Dong X, Qin M, Zhang Y, Wang Z. Colorimetric
               toehold-based recognition, cloaking, and decloaking of   aptasensor targeting zearalenone developed based on the
               circulating tumor cells for live cell analysis.  Nano Lett.   hyaluronic acid-DNA hydrogel and bimetallic MOFzyme.
               2017;17(9):5193-5198.                              Biosens Bioelectron. 2022;212: 114366.
               doi: 10.1021/acs.nanolett.7b01006                  doi: 10.1016/j.bios.2022.114366
            52.  Chu B, Zhang D, Paukstelis PJ. A DNA G-quadruplex/i-   64.  Liedl T, Dietz H, Yurke B, Simmel F. Controlled trapping
               motif hybrid. Nucleic Acids Res. 2019;47(22):11921-11930.    and release of quantum dots in a DNA‐switchable hydrogel.
               doi: 10.1093/nar/gkz1008                           Small. 2007;3(10):1688-1693.
                                                                  doi: 10.1002/smll.200700366
            53.  Zhou X, Li C, Shao Y, Chen C, Yanga Z, Liu D. Reversibly
               tuning the mechanical properties of a DNA hydrogel   65.  Lin  DC,  Yurke  B,  Langrana  NA.  Inducing  reversible
               by a DNA nanomotor.  Chem Commun. 2016;52(70):     stiffness changes in DNA-crosslinked gels.  J Mater Res.
               10668-10671.                                       2005;20(6):1456-1464.
               doi: 10.1039/C6CC04724F                            doi: 10.1557/JMR.2005.0186


            Volume 10 Issue 2 (2024)                        42                                doi: 10.36922/ijb.1814
   45   46   47   48   49   50   51   52   53   54   55