Page 51 - IJB-10-2
P. 51

International Journal of Bioprinting                                DNA-functionalized hyaluronic acid bioink




            66.  English MA, Soenksen LR, Gayet RV, et al. Programmable   76.  Chen F, He Y, Li Z, et al. A novel tunable, highly biocompatible
               CRISPR-responsive  smart   materials.  Science.    and injectable DNA-chitosan hybrid hydrogel fabricated
               2019;365(6455):780-785.                            by  electrostatic  interaction between  chitosan  and  DNA
               doi: 10.1126/science.aaw5122                       backbone. Int J Pharm. 2021;606:120938.
                                                                  doi: 10.1016/j.ijpharm.2021.120938
            67.  Liao WC, Lilienthal S, Kahn JS, et al. pH-and ligand-
               induced release of loads from DNA–acrylamide hydrogel   77.  Li W, Wang C, Wang Z, et al. Physically cross-linked DNA
               microcapsules. Chem Sci. 2017;8(5):3362-3373.      hydrogel-based sustained cytokine delivery for in situ
               doi: 10.1039/C6SC04770J                            diabetic alveolar bone rebuilding. ACS Appl Mater Interfaces.
                                                                  2022;14(22):25173-25182.
            68.  Du X, Bi Y, He P, Wang C, Guo W. Hierarchically structured      doi: 10.1021/acsami.2c04769
               DNA‐based hydrogels exhibiting enhanced enzyme‐
               responsive and mechanical properties.  Adv Funct Mater.   78.  Borum RM, Moore C, Mantri, Y, Xu M, Jokerst JV.
               2020;30(51):2006305.                               Supramolecular loading of DNA hydrogels with dye–drug
               doi: 10.1002/adfm.202006305                        conjugates for real‐time photoacoustic monitoring of
                                                                  chemotherapy. Adv Sci. 2023;10(1):2204330.
            69.  Gu Y, Distler ME, Cheng HF, Huang C, Mirkin CA. A      doi: 10.1002/advs.202204330
               general DNA-gated hydrogel strategy for selective transport
               of chemical and biological cargos.  J Am Chem Soc.   79.  Yao C, Zhu C, Tang J, Ou J, Zhang R, Yang D. T lymphocyte-
               2021;143(41):17200-17208.                          captured DNA network for localized immunotherapy. J Am
               doi: 10.1021/jacs.1c08114                          Chem Soc. 2021;143(46):19330-19340.
                                                                  doi: 10.1021/jacs.1c07036
            70.  Huang F, Chen M, Zhou Z, Duan R, Xia F, Willner I.
               Spatiotemporal patterning of photoresponsive DNA-   80.  Yao C, Tang H, Wu W, et al. Double rolling circle amplification
               based hydrogels to tune local cell responses. Nat Commun.   generates physically cross-linked DNA network for stem cell
               2021;12(1):2364.                                   fishing. J Am Chem Soc. 2020;142(7): 3422-3429.
               doi: 10.1038/s41467-021-22645-8                    doi: 10.1021/jacs.9b11001
                                                               81.  Hu X, Wang Y, Tan Y, et al. A difunctional regeneration
            71.  Yan X, Yang B, Chen Y, et al. Anti‐friction MSCs delivery   scaffold  for  knee  repair  based  on  aptamer‐directed  cell
               system improves the therapy for severe osteoarthritis. Adv   recruitment. Adv Mater. 2017;29(15):1605235.
               Mater. 2021;33(52):2104758.                         doi: 10.1002/adma.201605235
               doi: 10.1002/adma.202104758
                                                               82.  Yang Z, Zhao T, Gao C, et al. 3D-bioprinted difunctional
            72  Ge Z, Li W, Zhao R, et al. Programmable DNA hydrogel   scaffold for in situ cartilage regeneration based on
               provides suitable microenvironment for enhancing   aptamer-directed cell recruitment and growth factor-
               TSPCS therapy in healing of tendinopathy.  Small.   enhanced cell chondrogenesis. ACS Appl Mater Interfaces.
               2023;19(32):2207231.                               2021;13(20):23369-23383.
               doi: 10.1002/smll.202207231                        doi: 10.1021/acsami.1c01844
            73.  Jin J, Xing Y, Xi Y, et al. A triggered DNA hydrogel   83.  Seliktar D. Designing cell-compatible hydrogels for
               cover to envelop and release single cells.  Adv Mater.   biomedical applications. Science. 2012;336(6085):1124-1128.
               2013;25(34):4714-4717.                             doi: 10.1126/science.1214804
               doi: 10.1002/adma.201301175
                                                               84.  Li C, Faulkner‐Jones A, Dun AR, et al. Rapid formation of
            74.  Zhou B, Yang B, Liu Q, et al. Effects of univariate stiffness   a supramolecular polypeptide–DNA hydrogel for in situ
               and degradation of DNA hydrogels on the transcriptomics   three‐dimensional multilayer bioprinting. Angew Chem Int
               of neural progenitor cells.  J Am Chem Soc. 2023;145(16):   Ed. 2015;54(13):3957-3961.
               8954-8964.                                         doi: 10.1002/anie.201411383
                doi: 10.1021/jacs.2c13373
                                                               85.  Lewns FK, Tsigkou O, Cox LR, Wildman RD, Grover LM.
            75.  Yang B, Zhou B, Li C, et al. A biostable l‐DNA hydrogel with   Hydrogels and bioprinting in bone tissue engineering:
               improved stability for biomedical applications. Angew Chem   creating artificial stem‐cell niches for in vitro models. Adv
               Int Ed. 2023;134(30):e202202520.                   Mater. 2023;35(52):2301670.
               doi: 10.1002/ange.202202520                        doi: 10.1002/adma.202301670












            Volume 10 Issue 2 (2024)                        43                                doi: 10.36922/ijb.1814
   46   47   48   49   50   51   52   53   54   55   56