Page 550 - IJB-10-2
P. 550
International Journal of Bioprinting Bottom-up and top-down VAT photopolimerization
17. Datta P, Dey M, Ataie Z, Unutmaz D, Ozbolat IT. 3D 34. Miri AK, Mirzaee I, Hassan S, et al. Effective bioprinting
bioprinting for reconstituting the cancer microenvironment. resolution in tissue model fabrication. Lab Chip.
NPJ Precis Oncol. 2020;4:1-13. 2019;19(11):2019-2037.
18. Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, 35. Miri AK, Mostafavi E, Khorsandi D, Hu S-K, Malpica
Chen S. 3D bioprinting of complex tissues in vitro: State-of-the- M, Khademhosseini A. Bioprinters for organs-on-chips.
art and future perspectives. Arch Toxicol. 2022;96(3):691-710 . Biofabrication. 2019;11(4):042002.
19. Jiang T, Munguia-Lopez JG, Flores-Torres S, Kort-Mascort 36. Zheng Z, Eiglin D, Alini M, Richards GR, Qin L, Lai Y.
J, Kinsella JM. Extrusion bioprinting of soft materials: An Visible light-induced 3D bioprinting technologies and
emerging technique for biological model fabrication. Appl corresponding bioink materials for tissue engineering: A
Phys Rev. 2019;l6(1):011310. review. Engineering. 2021;7:966-978.
20. Ozbolat IT, Hospodiuk M. Current advances and future 37. Cook AB, Clemons TD. Bottom‐up versus top‐down
perspectives in extrusion‐based bioprinting. Biomaterials. strategies for morphology control in polymer‐based
2016;76:76321-76343. biomedical materials. Adv NanoBiomed Res. 2022;2(1):
21. Li X, Liu B, Pei B, et al. Inkjet Bioprinting of Biomaterials. 2100087.
Chem Rev. 2020;120(19):10793-10833. 38. Kumar H, Kim K. Stereolithography 3D bioprinting.
22. Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based Methods Mol Biol. 2020;2140:93-108.
bioprinting-process, materials, applications and regulatory 39. Li W, Wang M, Ma H, Chapa-Villarreal abiola A, Lobo AO,
challenges. Biofabrication. 2020;12(2):022001. Zhang YS. Stereolithography apparatus and digital light
23. Antoshin AA, Churbanov SN, Minaev NV, et al. LIFT‐ processing-based 3D bioprinting for tissue fabrication.
bioprinting, is it worth it? Biofabrication. 2019;15:e00052. iScience. 2023;26(2):106039.
24. Grigoryan B, Sazer DW, Avila A, et al. Development, 40. Kuhnt T, Marroquín R, Camarero-Espinosa S, et al.
characterization, and applications of multi-material Poly (caprolactone-co-trimethylenecarbonate)
stereolithography bioprinting. Sci Rep. 2021;11(1):3171. urethane acrylate resins for digital light processing of
bioresorbable tissue engineering implants. Biomater Sci,
25. Zhang R, Larsen NB. Stereolithographic hydrogel printing 2019;7(12):4984-4989.
of 3D culture chips with biofunctionalized complex 3D
perfusion networks. Lab Chip. 2017;17(24):4273-4282. 41. Nieto D, Jiménez G, Moroni L, López‐Ruiz E, Gálvez‐Martín
P, Marchal JA. Biofabrication approaches and regulatory
26. Miri AK, Nieto D, Iglesias L, et al. Microfluidics‐enabled framework of metastatic tumor-on-a-chip models for
multimaterial maskless stereolithographic bioprinting. Adv precision oncology. Med Res Rev. 2021;42(5):1978-2001.
Mater. 2018;30:1800242.
42. Hu Y, Zhang H, Wang S, et al. Bone/cartilage organoid on-
27. Grogan SP, Chung PH, Soman P, et al. Digital micromirror chip: Construction strategy and application. Bioact Mater.
device projection printing system for meniscus tissue 2023;25:29-41.
engineering. Acta Biomater. 2013;9(7):7218-7226.
43. Bowles RD, Setton LA. Biomaterials for intervertebral disc
28. Bhusal A, Dogan E, Nguyen HA, et al. Multi-material digital regeneration and repair. Biomaterials. 2017;129:54-67.
light processing bioprinting of hydrogel-based microfluidic
chips. Biofabrication. 2021;14:014103. 44. Hosseinabadi HG, Nieto D, Yousefinejad A, Fattel H,
Ionov L, Miri AK. Ink material selection and optical design
29. Dogan E, Bhusal A, Cecen B, Miri AK. Miri. 3D printing considerations in DLP 3D printing. Appl Mater Today.
metamaterials towards tissue engineering. Appl Mater 2023;30:101721.
Today. 2020;20:100752.
45. Scaricamazza S, Salvatori I, Ferri A, Valle C. Skeletal muscle
30. Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills DK. in ALS: An unappreciated therapeutic opportunity? Cells.
Bioinks and bioprinting: A focused review. Bioprinting. 2021;10(3):525.
2020;18:e00080. https://doi.org/10.3390/cells10030525
31. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three- 46. Paganoni S, Karam C, Joyce N, Bedlack R, Carter GT.
dimensional bioprinting of thick vascularized tissues. Proc Comprehensive rehabilitative care across the spectrum
Natl Acad Sci. 2016;113(12):3179-3184.
of amyotrophic lateral sclerosis. NeuroRehabilitation.
32. Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting 2015;37(1):53-68.
of 3D convoluted renal proximal tubules on perfusable https://doi.org/10.3233/nre-151240
chips. Sci Rep. 2016;6:34845.
47. Zhou SW, Wang J, Chen SY, Ren K-F, Wang Y-X, Ji J. The
33. Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting substrate stiffness at physiological range significantly
of prevascularized tissue constructs with complex modulates vascular cell behavior. Colloids Surf B
microarchitecture. Biomaterials. 2017;124:106–115. Biointerfaces. 2022;(214):112483.
Volume 10 Issue 2 (2023) 542 doi: 10.36922/ijb.1017

