Page 550 - IJB-10-2
P. 550

International Journal of Bioprinting                          Bottom-up and top-down VAT photopolimerization




            17.  Datta P, Dey M, Ataie Z, Unutmaz D, Ozbolat IT. 3D   34.  Miri AK, Mirzaee I, Hassan S, et al. Effective bioprinting
               bioprinting for reconstituting the cancer microenvironment.   resolution  in  tissue  model  fabrication.  Lab Chip.
               NPJ Precis Oncol. 2020;4:1-13.                     2019;19(11):2019-2037.
            18.  Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M,    35.  Miri AK, Mostafavi E, Khorsandi D, Hu S-K, Malpica
               Chen S. 3D bioprinting of complex tissues in vitro: State-of-the-  M, Khademhosseini A. Bioprinters for organs-on-chips.
               art and future perspectives. Arch Toxicol. 2022;96(3):691-710 .  Biofabrication. 2019;11(4):042002.
            19.  Jiang T, Munguia-Lopez JG, Flores-Torres S, Kort-Mascort   36.  Zheng Z, Eiglin D, Alini M, Richards GR, Qin L, Lai Y.
               J, Kinsella JM. Extrusion bioprinting of soft materials: An   Visible light-induced 3D bioprinting technologies and
               emerging technique for biological model fabrication. Appl   corresponding bioink materials for tissue engineering: A
               Phys Rev. 2019;l6(1):011310.                       review. Engineering. 2021;7:966-978.
            20.  Ozbolat IT, Hospodiuk M. Current advances and future   37.  Cook AB, Clemons TD. Bottom‐up versus top‐down
               perspectives in extrusion‐based bioprinting.  Biomaterials.   strategies for morphology control in polymer‐based
               2016;76:76321-76343.                               biomedical materials.  Adv NanoBiomed Res. 2022;2(1):
            21.  Li X, Liu B, Pei B, et al. Inkjet Bioprinting of Biomaterials.   2100087.
               Chem Rev. 2020;120(19):10793-10833.             38.  Kumar H, Kim K. Stereolithography 3D bioprinting.
            22.  Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based   Methods Mol Biol. 2020;2140:93-108.
               bioprinting-process, materials, applications and regulatory   39.  Li W, Wang M, Ma H, Chapa-Villarreal abiola A, Lobo AO,
               challenges. Biofabrication. 2020;12(2):022001.     Zhang YS. Stereolithography apparatus and digital light
            23.  Antoshin  AA,  Churbanov SN,  Minaev  NV,  et  al.  LIFT‐  processing-based 3D bioprinting for tissue fabrication.
               bioprinting, is it worth it? Biofabrication. 2019;15:e00052.  iScience. 2023;26(2):106039.
            24.  Grigoryan B, Sazer DW, Avila A, et al. Development,   40.  Kuhnt T, Marroquín R, Camarero-Espinosa S, et al.
               characterization, and applications of multi-material   Poly (caprolactone-co-trimethylenecarbonate)
               stereolithography bioprinting. Sci Rep. 2021;11(1):3171.  urethane acrylate resins for digital light processing of
                                                                  bioresorbable tissue engineering implants. Biomater Sci,
            25.  Zhang R, Larsen NB. Stereolithographic hydrogel printing   2019;7(12):4984-4989.
               of 3D culture chips with biofunctionalized complex 3D
               perfusion networks. Lab Chip. 2017;17(24):4273-4282.  41.  Nieto D, Jiménez G, Moroni L, López‐Ruiz E, Gálvez‐Martín
                                                                  P, Marchal JA. Biofabrication approaches and regulatory
            26.  Miri AK, Nieto D, Iglesias L, et al. Microfluidics‐enabled   framework of metastatic tumor-on-a-chip models for
               multimaterial maskless stereolithographic bioprinting. Adv   precision oncology. Med Res Rev. 2021;42(5):1978-2001.
               Mater. 2018;30:1800242.
                                                               42.  Hu Y, Zhang H, Wang S, et al. Bone/cartilage organoid on-
            27.  Grogan SP, Chung PH, Soman P, et al. Digital micromirror   chip: Construction strategy and application. Bioact Mater.
               device projection printing system for meniscus tissue   2023;25:29-41.
               engineering. Acta Biomater. 2013;9(7):7218-7226.
                                                               43.  Bowles RD, Setton LA. Biomaterials for intervertebral disc
            28.  Bhusal A, Dogan E, Nguyen HA, et al. Multi-material digital   regeneration and repair. Biomaterials. 2017;129:54-67.
               light processing bioprinting of hydrogel-based microfluidic
               chips. Biofabrication. 2021;14:014103.          44.  Hosseinabadi HG, Nieto D, Yousefinejad A, Fattel H,
                                                                  Ionov L, Miri AK. Ink material selection and optical design
            29.  Dogan E, Bhusal A, Cecen B, Miri AK. Miri. 3D printing   considerations in DLP 3D printing.  Appl Mater Today.
               metamaterials towards tissue engineering.  Appl Mater   2023;30:101721.
               Today. 2020;20:100752.
                                                               45.  Scaricamazza S, Salvatori I, Ferri A, Valle C. Skeletal muscle
            30.  Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills DK.   in  ALS:  An unappreciated  therapeutic  opportunity?  Cells.
               Bioinks and bioprinting: A focused review.  Bioprinting.   2021;10(3):525.
               2020;18:e00080.                                    https://doi.org/10.3390/cells10030525
            31.  Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-  46.  Paganoni S, Karam C, Joyce N, Bedlack R, Carter GT.
               dimensional bioprinting of thick vascularized tissues. Proc   Comprehensive  rehabilitative  care  across  the  spectrum
               Natl Acad Sci. 2016;113(12):3179-3184.
                                                                  of  amyotrophic  lateral  sclerosis.  NeuroRehabilitation.
            32.  Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting   2015;37(1):53-68.
               of 3D convoluted renal proximal tubules on perfusable   https://doi.org/10.3233/nre-151240
               chips. Sci Rep. 2016;6:34845.
                                                               47.  Zhou SW, Wang J, Chen SY, Ren K-F, Wang Y-X, Ji J. The
            33.  Zhu  W,  Qu  X,  Zhu  J,  et  al.  Direct  3D  bioprinting   substrate  stiffness  at  physiological  range  significantly
               of prevascularized tissue constructs with complex   modulates  vascular  cell  behavior.  Colloids Surf B
               microarchitecture. Biomaterials. 2017;124:106–115.  Biointerfaces. 2022;(214):112483.


            Volume 10 Issue 2 (2023)                       542                                doi: 10.36922/ijb.1017
   545   546   547   548   549   550   551   552   553   554   555