Page 569 - IJB-10-2
P. 569

International Journal of Bioprinting                              OLS design for distal femur osseointegration




               drilling protocol: a 3D finite  element analysis. Appl Sci.   of ordinary cannulated compression screw and double-head
               2020;10:4104.                                      cannulated compression screw fixation in vertical femoral
               doi: 10.3390/app10124104                           neck fractures. Biomed Res Int. 2020;2020:2814548.
                                                                  doi: 10.1155/2020/2814548
            31.  Delikanli YE, Kayacan MC. Design, manufacture, and
               fatigue analysis of lightweight hip implants. J Appl Biomater   43.  Maia PW, Teixeira ML, Scavone de Macedo LG, et al. Use of
               Funct Mater. 2019;17(2):2280800019836830.          platelet-rich fibrin associated with xenograft in critical bone
               doi: 10.1177/2280800019836830                      defects: histomorphometric study in rabbits.  Symmetry.
                                                                  2019;11(10):1293.
            32.  Kang J, Dong E, Li X, et al. Topological design and
               biomechanical evaluation for 3D printed multi-segment      doi: 10.3390/sym11101293
               artificial vertebral implants.  Biomater Adv. 2021;127:   44.  Bai MY,  Wang CW, Wang JY, Lin MF, Chan  WP. Three-
               112250.                                            dimensional structure and cytokine distribution of platelet-
               doi: 10.1016/j.msec.2021.112250                    rich fibrin. Clinics (Sao Paulo). 2017;72(2):116-124.
                                                                  doi: 10.6061/clinics/2017(02)09
            33.  Kang H, Lin CY, Hollister SJ. Topology optimization of three
               dimensional  tissue  engineering  scaffold  architectures  for   45.  Wu PK, Lee CW, Sun WH, Lin CL. Biomechanical analysis
               prescribed bulk modulus and diffusivity. Struct Multidiscipl   and design method for patient-specific reconstructive
               Optim. 2010;42(4):633-644.                         implants for large bone defects of the distal lateral femur.
               doi: 10.1007/s00158-010-0508-8                     Biosensors. 2022;12(1):4.
                                                                  doi: 10.3390/bios12010004
            34.  Rayhan  SB,  Rahman  M.  Modeling  elastic  properties  of
               unidirectional  composite  materials  using  Ansys  material   46.  Bergmann G, Deuretzbacher G, Heller M, et al. Hip contact
               designer. Int J Struct Integr. 2020;28:1892-1900.  forces and gait patterns from routine activities. J Biomech.
               doi: 10.1016/j.prostr.2020.11.012                  2001;34(7):859-871.
                                                                  doi: 10.1016/s0021-9290(01)00040-9
            35.  Raja BK, Arun KC, Dheenadayalan J. Classification of distal
               femur fractures and their clinical relevance.  Trauma Int.   47.  Callaghan JP, McGill SM. Low back joint loading and
               2016;2(1):3-6.                                     kinematics during standing and unsupported sitting.
               doi: 10.13107/ti.2016.v02i01.012                   Ergonomics. 2001;44(3):280-294.
                                                                  doi: 10.1080/00140130118276
            36.  Schmidt U, Penzkofer R, Bachmaier S, Augat P. Implant
               material and design alter construct stiffness in distal femur   48.  Hamandi F, Laughlin R, Goswami T. Failure analysis of
               locking plate fixation: a pilot study. Clin Orthop Relat Res.   PHILOS plate construct used for pantalar arthrodesis paper
               2013;471(9):2808-2814.                             II—screws and FEM simulations. Metals. 2018;8(4):279.
               doi: 10.1007/s11999-013-2867-0                     doi: 10.3390/met8040279
            37.  Ahirwar H, Gupta VK, Nanda HS. Finite element   49.  Arabnejad S, Burnett Johnston R, Pura JA, Singh B, Tanzer
               analysis of fixed bone plates over fractured femur model.   M, Pasini  D. High-strength porous biomaterials for  bone
               Comput Methods Biomech Biomed Engin. 2021;24(15):   replacement: a strategy to assess the interplay between
               1742-1751.                                         cell morphology, mechanical properties, bone ingrowth
               doi: 10.1080/10255842.2021.1918123                 and manufacturing constraints.  Acta Biomater. 2016;30:
                                                                  345-356.
            38.  Chethan  KN, Bhat  SN, Shenoy  SB.  Biomechanics  of  hip
               joint: a systematic review.  Int J Eng Technol. 2018;7(3):      doi: 10.1016/j.actbio.2015.10.048
               1672-1676.                                      50.  Park JY, Park SH, Kim MG, Park SH, Yoo TH, Kim MS.
               doi: 10.14419/ijet.v7i3.15231                      Biomimetic scaffolds for bone tissue engineering. Adv Exp
                                                                  Med Biol. 2018;1064:109-121.
            39.  Darwish SM, Al-Samhan AM. Optimization of artificial hip
               joint parameters. Materwiss Werksttech. 2009;40(3):218-223.     doi: 10.1007/978-981-13-0445-3_7
               doi: 10.1002/mawe.200900430                     51.  Boyle C, Kim IY. Comparison of different hip prosthesis
                                                                  shapes considering micro-level bone remodeling and stress-
            40.  Niinomi  M.  Mechanical  properties  of  biomedical  titanium
               alloys. Mater Sci Eng A. 1998;243(1):231-236.      shielding criteria using three-dimensional design space
               doi: 10.1016/S0921-5093(97)00806-X                 topology optimization. J Biomech. 2011;44(9):1722-1728.
                                                                  doi: 10.1016/j.jbiomech.2011.03.038
            41.  Reina-Romo E, Sampietro-Fuentes A, Gómez-Benito MJ,
               Domínguez J, Doblaré M, García-Aznar JM. Biomechanical   52.  Rahmanian R, Moghaddam  NS, Haberland C,  Dean D,
               response of a mandible in a patient affected with hemifacial   Miller M, Elahinia M. Load bearing and stiffness tailored
               microsomia before and after distraction osteogenesis.    NiTi implants produced by additive manufacturing: a
               Med Eng Phys. 2010;32(8):860-866.                  simulation study. Proc SPIE. 2014;9058:905814.
               doi: 10.1016/j.medengphy.2010.05.012               doi: 10.1117/12.2048948
                                                               53.  Alghamdi HS. Methods to improve osseointegration of
            42.  Zhang Y, Yan C, Zhang L, Zhang W, Wang G. Comparison


            Volume 10 Issue 2 (2024)                       561                                doi: 10.36922/ijb.2590
   564   565   566   567   568   569   570   571   572